The 19S Deubiquitinase inhibitor b-AP15 is enriched in cells and elicits rapid commitment to cell death.

Mol Pharmacol

Department of Oncology and Pathology, Cancer Center Karolinska (X.W., M.M., S.B., X.Z., P.D., S.L.), and Division of Biochemistry, Department of Medical Biochemistry and Biophysics (W.S., E.S.J.A.), Karolinska Institute, Stockholm, Sweden; and Division of Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden (M.F., J.G., R.L., S.L.).

Published: June 2014

b-AP15 [(3E,5E)-3,5-bis[(4-nitrophenyl)methylidene]-1-(prop-2-enoyl)piperidin-4-one] is a small molecule inhibitor of the ubiquitin specific peptidase (USP) 14/ubiquitin carboxyl-terminal hydrolase (UCH) L5 deubiquitinases of the 19S proteasome that shows antitumor activity in a number of tumor models, including multiple myeloma. b-AP15 contains an α,β-unsaturated carbonyl unit that is likely to react with intracellular nucleophiles such as cysteine thiolates by Michael addition. We found that binding of b-AP15 to USP14 is partially reversible, and that inhibition of proteasome function is reversible in cells. Despite reversible binding, tumor cells are rapidly committed to apoptosis/cell death after exposure to b-AP15. We show that b-AP15 is rapidly taken up from the medium and enriched in cells. Enrichment provides an explanation of the stronger potency of the compound in cellular assays compared with in vitro biochemical assays. Cellular uptake was impaired by 30-minute pretreatment of cells with low concentrations of N-ethylmaleimide (10 µM), suggesting that enrichment was thiol dependent. We report that in addition to inhibition of deubiquitinases, b-AP15 inhibits the selenoprotein thioredoxin reductase (TrxR). Whereas proteasome inhibition was closely associated with cell death induction, inhibition of TrxR was not. TrxR inhibition is, however, likely to contribute to triggering of oxidative stress observed with b-AP15. Furthermore, we present structure-activity, in vivo pharmacokinetic, and hepatocyte metabolism data for b-AP15. We conclude that the strong enrichment of b-AP15 in cells and a rapid commitment to apoptosis/cell death are factors that likely contribute to the strong antitumor activity of this compound.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.113.091322DOI Listing

Publication Analysis

Top Keywords

b-ap15
10
enriched cells
8
rapid commitment
8
cell death
8
antitumor activity
8
apoptosis/cell death
8
cells
6
inhibition
5
19s deubiquitinase
4
deubiquitinase inhibitor
4

Similar Publications

FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations in acute myeloid leukemia (AML) are associated with poor prognosis and therapy resistance. This study aimed to demonstrate that inhibiting the deubiquitinating enzymes ubiquitin-specific peptidase 14 (USP14) and ubiquitin C-terminal hydrolase L5 (UCHL5) (USP14/UCHL5) with b-AP15 or the organogold compound auranofin (AUR) induces apoptosis in the ITD-transformed human leukemia cell line MV4-11 and mononuclear leukocytes derived from patients with FLT3-ITD-positive AML. This study included patients diagnosed with AML at Tokyo Medical and Dental University Hospital between January 2018 and July 2024.

View Article and Find Full Text PDF

Melanoma is an aggressive malignant tumor with a poor prognosis. Vemurafenib (PLX4032, vem) is applied to specifically treat BRAF V600E-mutated melanoma patients. However, prolonged usage of vem makes patients resistant to the drug and finally leads to clinical failure.

View Article and Find Full Text PDF

Targeting proteasomal deubiquitinases USP14 and UCHL5 with b-AP15 reduces 5-fluorouracil resistance in colorectal cancer cells.

Acta Pharmacol Sin

December 2023

The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Qingyuan, 511500, China.

5-Fluorouracil (5-FU) is the first-line treatment for colorectal cancer (CRC) patients, but the development of acquired resistance to 5-FU remains a big challenge. Deubiquitinases play a key role in the protein degradation pathway, which is involved in cancer development and chemotherapy resistance. In this study, we investigated the effects of targeted inhibition of the proteasomal deubiquitinases USP14 and UCHL5 on the development of CRC and resistance to 5-FU.

View Article and Find Full Text PDF

Inhibition of USP14 promotes TNFα-induced cell death in head and neck squamous cell carcinoma (HNSCC).

Cell Death Differ

May 2023

Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.

TNFα is a key mediator of immune, chemotherapy and radiotherapy-induced cytotoxicity, but several cancers, including head and neck squamous cell carcinomas (HNSCC), display resistance to TNFα due to activation of the canonical NFκB pro-survival pathway. However, direct targeting of this pathway is associated with significant toxicity; thus, it is vital to identify novel mechanism(s) contributing to NFκB activation and TNFα resistance in cancer cells. Here, we demonstrate that the expression of proteasome-associated deubiquitinase USP14 is significantly increased in HNSCC and correlates with worse progression free survival in Human Papillomavirus (HPV)- HNSCC.

View Article and Find Full Text PDF

Aberrant ubiquitin-proteasome system (UPS) contributes to tumorigeneisis or drug resistance of Pancreatic Adenocarcinoma (PAAD). Previous studies have implicated the deubiquitinase UCHL5 was abnormally expressed in multiple malignancies. However, little was reported about the specific roles of UCHL5 in PAAD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!