The advent of high-throughput sequencing technology facilitates the exploration of a variety of reference species outside the few established molecular genetic model systems. Bioinformatic and gene expression analyses provide new ways for comparative analyses between species, for instance, in the field of evolution and development. Despite these advances, a critical bottleneck for the exploration of new model species remains the establishment of functional tools, such as the ability to experimentally express genes in specific cells of an organism. We recently established a first transgenic strain of the annelid Platynereis, using a Tc1/mariner-type Mos1 transposon vector. Here, we compare Mos1 with Tol2, a member of the hAT family of transposons. In Platynereis, Tol2-based constructs showed a higher frequency of nuclear genome insertion and sustained gene expression in the G0 generation. However, in contrast to Mos1-mediated transgenes, Tol2-mediated insertions failed to retain fluorescence in the G1 generation, suggesting a germ line-based silencing mechanism. Furthermore, we present three novel expression constructs that were generated by a simple fusion-PCR approach and allow either ubiquitous or cell-specific expression of a reporter gene. Our study indicates the versatility of Tol2 for transient transgenesis, and provides a template for transgenesis work in other emerging reference species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979674 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093076 | PLOS |
Mol Biol Evol
December 2024
Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
Regeneration, the ability to restore body parts after injury, is widespread in metazoans; however, the underlying molecular and cellular mechanisms involved in this process remain largely unknown, and its evolutionary history is consequently unresolved. Recently, Reactive Oxygen Species (ROS) have been shown in several metazoan models to be triggers of apoptosis and cell proliferation that drive regenerative success. However, it is not known whether the contribution of ROS to regeneration relies on conserved mechanisms.
View Article and Find Full Text PDFNat Commun
November 2024
Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
Regeneration of missing body parts can be observed in diverse animal phyla, but it remains unclear to which extent these capacities rely on shared or divergent principles. Research into this question requires detailed knowledge about the involved molecular and cellular principles in suitable reference models. By combining single-cell RNA sequencing and mosaic transgenesis in the marine annelid Platynereis dumerilii, we map cellular profiles and lineage restrictions during posterior regeneration.
View Article and Find Full Text PDFElife
September 2024
Living Systems Institute, University of Exeter, Exeter, United Kingdom.
Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid . Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band.
View Article and Find Full Text PDFR Soc Open Sci
September 2024
University of Exeter, Biosciences, Faculty of Health and Life Sciences, Streatham Campus, Exeter EX4 4QD, UK.
A free-swimming larval stage features in many marine invertebrate life cycles. To transition to a seafloor-dwelling juvenile stage, larvae need to settle out of the plankton, guided by specific environmental cues that lead them to an ideal habitat for their future life on the seafloor. Although the marine annelid has been cultured in research laboratories since the 1950s and has a free-swimming larval stage, specific environmental cues that induce settlement in this nereid worm are yet to be identified.
View Article and Find Full Text PDFChemosphere
September 2024
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!