From nitric oxide to hyperbaric oxygen: invisible and subtle but nonnegligible gaseous signaling molecules in acute pancreatitis.

Pancreas

From the *Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University; and †Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang Province, China.

Published: May 2014

Nitric oxide (NO), carbon monoxide, and hydrogen sulfide in addition to hydrogen are well established as gaseous signal molecules throughout the body. Although the role of gasotransmitters in acute pancreatitis (AP) has been explored for many years, many details remain to be elucidated. The physiologic effect of NO in AP mainly relies on induced NO synthase, which stimulates the production of cytokines in the blood. Carbon monoxide inhibits nuclear factor-κB activation, which leads to amelioration of the inflammatory response. Hydrogen sulfide displays a dual role in the mechanism of AP according to its concentration in the system. Hydrogen is a newly discovered gaseous signaling molecule, and currently, there is little evidence that it has any function in alleviating inflammation. We discovered that hyperbaric oxygen is a novel gasotransmitter that has potential use in the treatment of AP. The correlation among hyperbaric oxygen, hypoxia inducible factor 1α, and other signaling pathways should be further studied. We also discuss some prospects and issues that remain to be resolved in this review. In summary, the discovery of gaseous signal molecules has established a new platform for deep investigation of the mechanism of AP, and our knowledge of the role of gasotransmitters in AP will increase with further research.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MPA.0000000000000062DOI Listing

Publication Analysis

Top Keywords

hyperbaric oxygen
12
nitric oxide
8
gaseous signaling
8
acute pancreatitis
8
carbon monoxide
8
hydrogen sulfide
8
gaseous signal
8
signal molecules
8
role gasotransmitters
8
oxide hyperbaric
4

Similar Publications

As a common disease in the elderly, the diagnosis of Alzheimer's disease (AD) is of great significance to the treatment and prognosis of the patients. Studies have found that magnetic resonance imaging plays an important role in the early diagnosis of Alzheimer's disease. This article tries to review the application of magnetic resonance imaging in the diagnosis and differential diagnosis of Alzheimer's disease.

View Article and Find Full Text PDF

Introduction: Continued interest in the optimization of recovery in aesthetics has led to the exploration of adjunctive therapies. Hyperbaric oxygen therapy (HBOT) serves as one such therapy that may have an impact in this field. HBOT is hypothesized to improve ischemia, reduce swelling, and minimize secondary hypoxic tissue damage.

View Article and Find Full Text PDF

Background: Autologous breast reconstruction provides substantial benefits in terms of aesthetics and longevity. However, the risk of flap necrosis poses potential challenges to patients' appearance and psychological well-being, while also escalating health care costs. Consequently, examining the risk factors, assessment techniques, and therapeutic approaches for flap necrosis is critically important.

View Article and Find Full Text PDF

Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality?

J Cardiovasc Dev Dis

December 2024

Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.

Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health.

View Article and Find Full Text PDF

Background: To explore the mechanism of hyperbaric oxygen (HBO) intervention on acute lung injury secondary to snake venom poisoning and provide more toxicological and clinical evidence for venom poisoning.

Methods: Male Kunming mice (n = 96) were randomly divided into four groups: the control group which was not given any interventional treatments, venom group in which each mouse was injected with venom (1 mg/kg) through the tail vein, antivenom group in which each mouse was injected with anti- venom immediately after the model was successfully established, and HBO+antivenom group in which each mouse was given HBO treatment at 1 h, 5 h, 11 h and 23 h following the injection of antivenom. Lung tissues of mice were obtained and processed for the detection of the lung coefficient, the levels of inflammatory factors such as interleukin (IL)-6, IL-10 and IL-17, and the protein expression of retinoic acid receptor (RAR)-related orphan receptor gamma (RORγt) and forkhead box P3 (FOXP3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!