A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies. | LitMetric

Long noncoding RNAs in spermatogenesis: insights from recent high-throughput transcriptome studies.

Reproduction

School of Biomedical Sciences, Room 622A, Lo Kwee-Seong Integrated Biomedical Sciences Building, The Chinese University of Hong Kong, Shatin, Hong Kong, China.

Published: May 2014

Spermatogenesis is a complex developmental process in which undifferentiated spermatogonia are differentiated into spermatocytes and spermatids through two rounds of meiotic division and finally giving rise to mature spermatozoa (sperm). These processes involve many testis- or male germ cell-specific gene products that undergo strict developmental regulations. As a result, identifying critical, regulatory genes controlling spermatogenesis provide the clues not only to the regulatory mechanism of spermatogenesis at the molecular level, but also to the identification of candidate genes for infertility or contraceptives development. Despite the biological importance in male germ cell development, the underlying mechanisms of stage-specific gene regulation and cellular transition during spermatogenesis remain largely elusive. Previous genomic studies on transcriptome profiling were largely limited to protein-coding genes. Importantly, protein-coding genes only account for a small percentage of transcriptome; the majority are noncoding transcripts that do not translate into proteins. Although small noncoding RNAs (ncRNAs) such as microRNAs, siRNAs, and Piwi-interacting RNAs are extensively investigated in male germ cell development, the role of long ncRNAs (lncRNAs), commonly defined as ncRNAs longer than 200 bp, is relatively unexplored. Herein, we summarize recent transcriptome studies on spermatogenesis and show examples that a subset of noncoding transcript population, known as lncRNAs, constitutes a novel regulatory target in spermatogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1530/REP-13-0594DOI Listing

Publication Analysis

Top Keywords

male germ
12
noncoding rnas
8
transcriptome studies
8
studies spermatogenesis
8
germ cell
8
cell development
8
protein-coding genes
8
spermatogenesis
7
long noncoding
4
rnas spermatogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!