Cyclic pentanone peroxide: sensitiveness and suitability as a model for triacetone triperoxide.

J Forensic Sci

School of Physical, Environmental and Mathematical Sciences, UNSW Canberra at the Australian Defence Force Academy, PO Box 7916, Canberra BC, ACT, 2610, Australia.

Published: July 2014

Research to counter the threat of organic peroxides such as triacetone triperoxide (TATP) is at times hampered by their inherent extreme sensitiveness and volatility. This work describes an approach to lowering some risks associated with the handling of TATP in the laboratory through the use of an analog species, tripentanone triperoxide (TPTP). Sensitiveness has been tested via standard methods. GCMS analysis has shown that TPTP degrades via similar mechanisms to TATP under a range of conditions. Slight differences in product composition were traced to side reactions which may also affect impurities present in homemade TATP synthesis. A pilot field trial was conducted to evaluate TPTP as a substitute for TATP in explosive detection dog (EDD) scent training. The degradation studies have yielded insights into the complexities of the acidic degradation of cyclic peroxides with potential forensic application, and TPTP's inadequacy as a TATP pseudoscent is a valuable example of the limitations of such training aids.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1556-4029.12439DOI Listing

Publication Analysis

Top Keywords

triacetone triperoxide
8
tatp
6
cyclic pentanone
4
pentanone peroxide
4
peroxide sensitiveness
4
sensitiveness suitability
4
suitability model
4
model triacetone
4
triperoxide counter
4
counter threat
4

Similar Publications

Detection of illicit compounds like explosives and drugs of abuse at trace levels is crucial to provide public security and health safety. A dual ambient sampling system hollow cathode discharge (HCD) ion source was developed to investigate its performance. Here, trinitrotoluene (TNT), trinitrobenzene (TNB), hexamethylene triperoxide diamine (HMTD), and triacetone triperoxide (TATP) as explosives and methamphetamine (MA) as drugs of abuse were taken as model compounds.

View Article and Find Full Text PDF

Background: Direct detection of the notorious explosive triacetone triperoxide (TATP) is very difficult because it lacks facile ionization and UV absorbance or fluorescence. Besides, the current indirect methods are time-consuming and need a pre-step for TATP cleavage to hydrogen peroxide. Moreover, they commonly show significant false-positive results in the presence of some camouflage which limits their field applications.

View Article and Find Full Text PDF

Homemade explosives, such as peroxides, nitrates, and chlorates, are increasingly abused by terrorists, criminals, and amateur chemists. The starting materials are easily accessible and instructions on how to make the explosives are described on the Internet. Safety considerations raise the need to detect these substances quickly and in low concentrations using simple methods.

View Article and Find Full Text PDF

Controlled Synthesis of Preferential Facet-Exposed Fe-MOFs for Ultrasensitive Detection of Peroxides.

Small

August 2024

Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China.

Exposing different facets on metal-organic frameworks (MOFs) is highly desirable to enhance the performance for various applications, however, exploiting a concise and effective approach to achieve facet-controlled synthesis of MOFs remains challenging. Here, by modulating the ratio of metal precursors to ligands, the facet-engineered iron-based MOFs (Fe-MOFs) exhibits enhanced catalytic activity for Fenton reaction are explored, and the mechanism of facet-dependent performance is revealed in detail. Fully exposed (101) and (100) facets on spindle-shaped Fe-MOFs enable rapid oxidation of colorless o-phenylenediamine (OPD) to colored products, thereby establishing a dual-mode platform for the detection of hydrogen peroxide (HO) and triacetone triperoxide (TATP).

View Article and Find Full Text PDF

There are many factors that may affect the longevity of or guide the use of canine training aids. Literature to date has mainly focused on identifying the headspace volatiles associated with training aids or odors and only minimal research exists into how different variables may alter those volatiles. The current study examines several factors affecting canine training aids: humidity, air flow, transportation, and operational deployment, using the triacetone triperoxide polymer odor capture-and-release canine training aid (TATP POCR) as the target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!