Background: Primary infection and reactivation of human cytomegalovirus (HCMV) is associated with allograft rejection. Pig-to-human xenotransplantation is regarded as an alternative to circumvent donor organ shortage and inevitably, porcine endothelial cells (pEC) will be exposed to human pathogens, among them HCMV. Infection of pEC with HCMV induces apoptosis and entry is sufficient to induce phenotypic alterations, which have the potential to result in rejection and vasculopathy. We investigated the mechanisms used by HCMV to enter pEC from different anatomical origins and compared them with the entry mechanisms used to enter human endothelial cells (hEC).

Methods: Immortalized porcine aortic (PEDSV.15) and porcine microvascular bone marrow derived EC (2A2) as well as primary human aortic (HAEC) and microvascular EC (HMVEC) were inoculated with the endotheliotropic (TB40/E) or the fibroblast propagated (TB40/F) HCMV strains at multiplicity of infection (MOI) ranging from 0.3 to 5. EC were analyzed for receptor expression and their involvement in HCMV entry. The role of endocytosis was evaluated by treating EC with specific inhibitors, and the involvement of the endolysosomal pathway was investigated by confocal microscopy.

Results: Silencing of platelet-derived growth factor receptor alpha resulted in a reduced expression of viral immediate early (IE) antigen only in pEC infected with either TB40/E or TB40/F whereas silencing of β1 integrins reduced expression of IE proteins in all EC except for TB40/F-infected microvascular pEC. TB40/E enters hEC and pEC by a similar mechanism dependent on dynamin-2, lipid rafts, actin and pH, whereas entry of TB40/F in pEC occurs mainly by a dynamin-2-dependent, clathrin-, lipid rafts-independent mechanism and in a pH-dispensable manner. When actin polymerization was prevented, TB40/F could enter pEC in an actin-independent fashion. Disturbance of the microtubule cytoskeleton resulted in an inhibition of infection of TB40/E-infected EC, whereas infection of TB40/F-infected pEC was not modified. Finally, viral particles located in vesicles of the endolysosomal pathway, suggesting that HCMV uses this pathway for intracellular trafficking following entry.

Conclusions: Our findings demonstrate that HCMV uses a variety of entry mechanisms that are dependent on the strain and on the vascular origin of the cells. Given the profound effect of pEC infection with HCMV, prevention of such an infection will be crucial for clinical application of xenotransplantation. A potential avenue is to render porcine grafts resistant to HCMV infection by blocking viral entry and propagation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/xen.12097DOI Listing

Publication Analysis

Top Keywords

endothelial cells
12
hcmv
10
pec
10
human cytomegalovirus
8
porcine endothelial
8
vascular origin
8
infection
8
hcmv infection
8
enter pec
8
entry mechanisms
8

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Objectives: To explore the role of berberine (BBR) in ameliorating coronary endothelial cell injury in Kawasaki disease (KD) by regulating the complement and coagulation cascade.

Methods: Human coronary artery endothelial cells (HCAEC) were divided into a healthy control group, a KD group, and a BBR treatment group (=3 for each group). The healthy control group and KD group were supplemented with 15% serum from healthy children and KD patients, respectively, while the BBR treatment group received 15% serum from KD patients followed by the addition of 20 mmol/L BBR.

View Article and Find Full Text PDF

Parthenolide improves sepsis-induced coagulopathy by inhibiting mitochondrial-mediated apoptosis in vascular endothelial cells through BRD4/BCL-xL pathway.

J Transl Med

January 2025

Department of Anesthesiology, Daping Hospital, Army Medical University, No.10, Changjiang Road, Yuzhong District, Chongqing, 400042, China.

Background: Sepsis is a systemic inflammatory syndrome that can cause coagulation abnormalities, leading to damage in multiple organs. Vascular endothelial cells (VECs) are crucial in the development of sepsis-induced coagulopathy (SIC). The role of Parthenolide (PTL) in regulating SIC by protecting VECs remains unclear.

View Article and Find Full Text PDF

Gold(I) N-heterocyclic carbene complexes show strong proapoptotic, antioxidant and anti-inflammatory effects in A2780 and endothelial cells.

Chem Biol Interact

January 2025

Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria. Electronic address:

A series of eight gold(I) N-heterocyclic carbene (NHC) complexes [Au(IMes)(HLn)] based on 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) and 7-azaindole derivatives (HLn), where n = 1-8 for HL1 = 5-flouro-7-azaindole, HL2 = 5-bromo-7-azaindole, HL3 = 3-chloro-7-azaindole, HL4 = 3-iodo-7-azaindole, HL5 = 5-bromo-3-chloro-7-azaindole, HL6 = 5-bromo-3-iodo-7-azaindole, HL7 = 4-chloro-2-methyl-7-azaindole and HL8 = 7-azaindole, was prepared, characterised and studied for their in vitro anti-cancer and anti-inflammatory effects. The complexes showed significant cytotoxicity on human ovarian cancer cell lines (A2780, IC ≈ 8-19 μM and A2780R, IC ≈ 8-19 μM) and lowered toxicity in normal HaCat and MRC-5 cells. Cellular effects of the selected complexes 1 and 7 were evaluated in A2780 cells using flow cytometry.

View Article and Find Full Text PDF

The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury.

Chem Biol Interact

January 2025

Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:

Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!