Download full-text PDF |
Source |
---|
J Prosthodont
January 2025
Department of Dentistry, Federal University of Rio Grande do Norte (UFRN), Lagoa Nova, Natal, Brazil.
Purpose: To assess the impact of staining and multiple firings on the mechanical, optical, and surface characteristics of zirconia-containing lithium silicate ceramics (ZLS).
Materials And Methods: Ninety ZLS discs (Suprinity, VITA Zahnfabrick) were divided according to the "Number of firings" protocol: Ctr-control, no characterization; SC-single firing cycle (for characterization, crystallization and staining simultaneously); and DC-double firing cycle (crystallization firing cycle was performed separately from the staining firing). Extrinsic pigmentation was performed to replicate the characterization of a monolithic restoration.
J Esthet Restor Dent
January 2025
Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
Objective: To conduct a systematic review on the masking ability of subtractively and additively manufactured dental ceramics.
Materials And Methods: The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The electronic search was carried out through MEDLINE, Scopus, and Website of Science databases with a date restriction being from 2001 onwards.
Mater Horiz
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
Adaptive control of solar light based on an optical switching strategy is essential to tune thermal gain, while real-time solar regulation and hence on-demand thermal management coupled with dynamic conditions still faces a formidable challenge. Herein, we develop a stacking structure which is mechanosensitive and can be finely tuned depending on the dynamic cavitation effect. Specifically, the stacking structure transfers from a solid monolith state to porous layered state progressively under mechanical stretching, and the resulting porous layered state gradually goes back to the solid monolith state once the load is released.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Perovskite/silicon tandem solar cells (TSCs) are promising candidates for commercialization due to their outstanding power conversion efficiencies (PCEs). However, controlling the crystallization process and alleviating the phases/composition inhomogeneity represent a considerable challenge for perovskite layers grown on rough silicon substrates, ultimately limiting the efficiency and stability of TSC. Here, this study reports a "halide locking" strategy that simultaneously modulates the nucleation and crystal growth process of wide bandgap perovskites by introducing a multifunctional ammonium salt, thioacetylacetamide hydrochloride (TAACl), to bind with all types of cations and anions in the mixed halide perovskite precursor.
View Article and Find Full Text PDFNat Commun
January 2025
Molecular Materials and Nanosystems, Institute of Complex Molecular Systems, Eindhoven University of Technology, partner of Solliance, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
All-perovskite tandem photovoltaics are a potentially cost-effective technology to power chemical fuel production, such as green hydrogen. However, their application is limited by deficits in open-circuit voltage and, more challengingly, poor operational stability of the photovoltaic cell. Here we report a laboratory-scale solar-assisted water-splitting system using an electrochemical flow cell and an all-perovskite tandem solar cell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!