Mitochondrial DNA (mtDNA) haplotypes and dysfunctions in presbyacusis.

Acta Otorhinolaryngol Ital

Department of Neurosciences, Faculty of Medicine, University of Pisa, Italy.

Published: February 2014

The aim of this study was to investigate the presence of mitochondrial DNA (mtDNA) alterations and metabolic dysfunctions in patients with presbyacusis, and to discover correlations between presbyacusis and the degree of hearing loss and mitochondrial damage. Seventy patients with presbyacusis were examined, including 40 Egyptian patients and 30 Italian patients. Forty eight normal subjects were included as control group, including 24 Egyptians and 24 Italians. There was no common point mutation, and A1555G, A3243G, A7445G not were detected in any patients or controls. Haplogroup U was significantly common in patients in comparison to controls. Mutation of antioxidant genes (GSTT1, GSTM1) were significantly present in only Italian patients compared to Italian controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970225PMC

Publication Analysis

Top Keywords

mitochondrial dna
8
dna mtdna
8
patients presbyacusis
8
italian patients
8
patients
7
mtdna haplotypes
4
haplotypes dysfunctions
4
presbyacusis
4
dysfunctions presbyacusis
4
presbyacusis aim
4

Similar Publications

Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction.

Cell Mol Life Sci

January 2025

Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.

Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.

View Article and Find Full Text PDF

Equol Alleviates the In Vitro Aging-Induced Disruption of Porcine Oocytes.

Reprod Domest Anim

January 2025

College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China.

Oocyte quality is crucial for determining the subsequent embryo developmental capacity and reproductive outcomes. However, aging is detrimental to oocyte quality. Previous studies have demonstrated that soy isoflavones have positive effects on the reproductive performance of female pigs.

View Article and Find Full Text PDF

All insect trypanosomatids of the subfamily Strigomonadinae harbor a proteobacterial symbiont in their cytoplasm and unique ultrastructural cell organization. Here, we report an unexpected finding within the Strigomonadinae subfamily: the identification of a new species lacking bacterial symbiont, represented by two isolates obtained from Calliphoridae flies in Brazil and Uganda. This species is hereby designated as Kentomonas inusitatus n.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) variants considerably affect diabetes mellitus by disturbing mitochondrial function, energy metabolism, oxidative stress response, and even insulin secretion. The m.3243 A > G variants is associated with maternally inherited diabetes and deafness (MIDD), where early onset diabetes and hearing loss are prominent features.

View Article and Find Full Text PDF

The Species Group contains eleven species of terraranan frogs distributed from eastern Honduras to eastern Panama. All species have remarkable color pattern polymorphisms, which may contribute to potential taxonomic problems. We performed exhaustive sampling throughout the geographic distribution of the group to evaluate the phylogenetic relationships and biogeographic history of all named species based on two mitochondrial markers and nuclear ddRAD loci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!