Substrate-gated docking of pore subunit Tha4 in the TatC cavity initiates Tat translocase assembly.

J Cell Biol

Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611.

Published: April 2014

The twin-arginine translocase (Tat) transports folded proteins across tightly sealed membranes. cpTatC is the core component of the thylakoid translocase and coordinates transport through interactions with the substrate signal peptide and other Tat components, notably the Tha4 pore-forming component. Here, Cys-Cys matching mapped Tha4 contact sites on cpTatC and assessed the role of signal peptide binding on Tha4 assembly with the cpTatC-Hcf106 receptor complex. Tha4 made contact with a peripheral cpTatC site in nonstimulated membranes. In the translocase, Tha4 made an additional contact within the cup-shaped cavity of cpTatC that likely seeds Tha4 polymerization to form the pore. Substrate binding triggers assembly of Tha4 onto the interior site. We provide evidence that the substrate signal peptide inserts between cpTatC subunits arranged in a manner that conceivably forms an enclosed chamber. The location of the inserted signal peptide and the Tha4-cpTatC contact data suggest a model for signal peptide-gated Tha4 entry into the chamber to form the translocase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3987133PMC
http://dx.doi.org/10.1083/jcb.201311057DOI Listing

Publication Analysis

Top Keywords

signal peptide
16
tha4
9
substrate signal
8
tha4 contact
8
translocase
5
cptatc
5
signal
5
substrate-gated docking
4
docking pore
4
pore subunit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!