The production of thermostable laccases from a native strain of the white-rot fungus Pycnoporus sanguineus isolated in Mexico was enhanced by testing different media and a combination of inducers including copper sulfate (CuSO4). The best conditions obtained from screening experiments in shaken flasks using tomato juice, CuSO4, and soybean oil were integrated in an experimental design. Enhanced levels of tomato juice as the medium, CuSO4 and soybean oil as inducers (36.8% (v/v), 3 mmol/L, and 1% (v/v), respectively) were determined for 10 L stirred tank bioreactor runs. This combination resulted in laccase titer of 143,000 IU/L (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), pH 3.0), which represents the highest activity so far reported for P. sanguineus in a 10-L fermentor. Other interesting media resulting from the screening included glucose-bactopeptone which increased laccase activity up to 20,000 IU/L, whereas the inducers Acid Blue 62 and Reactive Blue 19 enhanced enzyme production in this medium 10 times. Based on a partial characterization, the laccases of this strain are especially promising in terms of thermostability (half-life of 6.1 h at 60 °C) and activity titers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3989153 | PMC |
http://dx.doi.org/10.1631/jzus.B1300246 | DOI Listing |
Vet Res
January 2025
Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China.
Newcastle disease virus (NDV) is a significant member of the Paramyxoviridae family, known for causing epidemics and substantial economic losses in the poultry industry worldwide. The NDV RNA genome primarily encodes six structural proteins (N, P, M, F, HN, and L) and two non-structural proteins (V and W). Among these, the polymerase-associated proteins (N, P, and L) and the viral RNA (vRNA) genome form the ribonucleoprotein complex, which plays a crucial role in the synthesis and transcription of NDV vRNA.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
The protein therapeutics market, including antibody and fusion proteins, has experienced steady growth over the past decade, underscoring the importance of optimizing amino acid sequences. In our previous study, we developed a fusion protein, R31, which combines retinol-binding protein (RBP) with albumin domains IIIA and IB, linked by a sequence (AAAA), and includes an additional disulfide bond (N227C-V254C) in IIIA. This fusion protein effectively inhibited hepatic stellate cell activation.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, Istanbul, 34700, Turkey.
Thermomonas hydrothermalis, a thermophilic bacterium isolated from hot springs, exhibits unique genomic features that underpin its adaptability to extreme environments and its potential in industrial biotechnology. In this study, we present a comparative genomic analysis of two strains, DSM 14834 and HOT.CON.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Bioscience and Bioengineering, Fuzhou University, Fuzhou 360105, China. Electronic address:
Baeyer-Villiger monooxygenases (BVMOs) can catalyze the asymmetric sulfoxidation to form pharmaceutical prazoles in environmentally friendly approach. In this work, the thermostable BVMO named PockeMO had high sulfoxidation activity towards rabeprazole sulfide to form (R)-rabeprazole but demonstrated significant overoxidation activity to form undesired sulfone by-product. To address this issue, the enzyme was engineered based on the computer assisted comparison for the substrate binding conformations.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biological Engineering, Sichuan University of Science and Engineering, Yibin, Sichuan 644005, China. Electronic address:
Cellulose-based paper is inherently poor in hydrophobicity and mechanical strength, limiting its practical applications in daily life such as packaging materials, water-resistant labels, and disposable tableware. This study aimed to develop an effective and eco-friendly strategy to address these limitations by enhancing the hydrophobicity and mechanical properties of cellulose paper. To achieve this, an internal sizing agent was prepared by combining (3-glycidoxypropyl) trimethoxy (GPS) with natural rosin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!