Planar microdevices for enhanced in vivo retention and oral bioavailability of poorly permeable drugs.

Adv Healthc Mater

Department of Bioengineering and Therapeutic Sciences, University of California, 1700 4th Street, Byers Hall 204, Box 2520, San Francisco, CA, 94158, USA.

Published: October 2014

The development of novel oral drug delivery platforms for administering therapeutics in a safe and effective manner through the harsh gastrointestinal environment is of great importance. Here, the use of engineered thin planar poly(methyl methacrylate) (PMMA) microdevices is tested to enhance oral bioavailability of acyclovir, a poorly permeable drug. Acyclovir is loaded into the unidirectional drug releasing microdevice reservoirs using a drug entrapping photocross-linkable hydrogel matrix. An increase in acyclovir permeation across in vitro caco-2 monolayer is seen in the presence of microdevices as compared with acyclovir-entrapped hydrogels or free acyclovir solution. Cell proliferation studies show that microdevices are relatively nontoxic in nature for use in in vivo studies. Enhanced in vivo retention of microdevices is observed as their thin side walls experience minimal peristaltic shear stress as compared with spherical microparticles. Unidirectional acyclovir release and enhanced retention of microdevices achieve a 4.5-fold increase in bioavailability in vivo as compared with an oral gavage of acyclovir solution with the same drug mass. The enhanced oral bioavailability results suggest that thin, planar, bioadhesive, and unidirectional drug releasing microdevices will significantly improve the systemic and localized delivery of a broad range of oral therapeutics in the near future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4256094PMC
http://dx.doi.org/10.1002/adhm.201300676DOI Listing

Publication Analysis

Top Keywords

oral bioavailability
12
enhanced vivo
8
vivo retention
8
thin planar
8
unidirectional drug
8
drug releasing
8
acyclovir solution
8
retention microdevices
8
oral
6
drug
6

Similar Publications

The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune disorder that impacts around 1% of the global population. Up to 20% of people become disabled within a year, which has a severely negative impact on their health and quality of life. RA has a complicated pathogenic mechanism, which initially affects small joints and progresses to larger ones over time.

View Article and Find Full Text PDF

This study aimed to investigate the pharmacokinetics of difloxacin in pigeons following oral (PO), intramuscular (IM), and intravenous (IV) administration. Thirty pigeons were randomly divided into three groups (IM, IV, and PO; n = 10 per group). Difloxacin was administered at 10 mg/kg body weight (BW) via each route.

View Article and Find Full Text PDF

Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.

View Article and Find Full Text PDF

Helicobacter pylori (H. pylori) is an extremely prevalent human pathogen globally that leads to severe illnesses. Sadly, the worldwide issue of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!