Programmable polymer-based supramolecular temperature sensor with a memory function.

Angew Chem Int Ed Engl

Université Lille Nord de France, ENSCL, Unité des Matériaux et Transformations, UMR CNRS 8207, Equipe Ingénierie des Systèmes Polymères (ISP), 59655 Villeneuve d'Ascq Cedex (France).

Published: May 2014

A new class of polymeric thermometers with a memory function is reported that is based on the supramolecular host-guest interactions of poly(N-isopropylacrylamide) (PNIPAM) with side-chain naphthalene guest moieties and the tetracationic macrocycle cyclobis(paraquat-p-phenylene) (CBPQT(4+)) as the host. This supramolecular thermometer exhibits a memory function for the thermal history of the solution, which arises from the large hysteresis of the thermoresponsive LCST phase transition (LCST = lower critical solution temperature). This hysteresis is based on the formation of a metastable soluble state that consists of the PNIPAM-CBPQT(4+) host-guest complex. When heated above the transition temperature, the polymer collapses, and the host-guest interactions are disrupted, making the polymer more hydrophobic and less soluble in water. Aside from providing fundamental insights into the kinetic control of supramolecular assemblies, the developed thermometer with a memory function might find use in applications spanning the physical and biological sciences.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201402108DOI Listing

Publication Analysis

Top Keywords

memory function
16
host-guest interactions
8
programmable polymer-based
4
supramolecular
4
polymer-based supramolecular
4
supramolecular temperature
4
temperature sensor
4
memory
4
sensor memory
4
function
4

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

Preserving the ability to vividly recall emotionally rich experiences contributes to quality of life in older adulthood. While prior works suggest that moderate-intensity physical activity (MPA) may bolster memory, it is unclear whether this extends to emotionally salient memories consolidated during sleep. In the current study, older adults (mean age = 72.

View Article and Find Full Text PDF

A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.

View Article and Find Full Text PDF

Electronic ferroelectricity in monolayer graphene moiré superlattices.

Nat Commun

December 2024

Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.

Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.

View Article and Find Full Text PDF

Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sliding ferroelectrics remain elusive. Here, we demonstrate the rewritable, non-volatile memories at room-temperature with a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer MoS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!