A new class of polymeric thermometers with a memory function is reported that is based on the supramolecular host-guest interactions of poly(N-isopropylacrylamide) (PNIPAM) with side-chain naphthalene guest moieties and the tetracationic macrocycle cyclobis(paraquat-p-phenylene) (CBPQT(4+)) as the host. This supramolecular thermometer exhibits a memory function for the thermal history of the solution, which arises from the large hysteresis of the thermoresponsive LCST phase transition (LCST = lower critical solution temperature). This hysteresis is based on the formation of a metastable soluble state that consists of the PNIPAM-CBPQT(4+) host-guest complex. When heated above the transition temperature, the polymer collapses, and the host-guest interactions are disrupted, making the polymer more hydrophobic and less soluble in water. Aside from providing fundamental insights into the kinetic control of supramolecular assemblies, the developed thermometer with a memory function might find use in applications spanning the physical and biological sciences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201402108 | DOI Listing |
Sci Rep
December 2024
Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
Preserving the ability to vividly recall emotionally rich experiences contributes to quality of life in older adulthood. While prior works suggest that moderate-intensity physical activity (MPA) may bolster memory, it is unclear whether this extends to emotionally salient memories consolidated during sleep. In the current study, older adults (mean age = 72.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.
View Article and Find Full Text PDFNat Commun
December 2024
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sliding ferroelectrics remain elusive. Here, we demonstrate the rewritable, non-volatile memories at room-temperature with a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer MoS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!