CuO-ZnO micro/nanoporous array-films are synthesized by transferring a solution-dipped self-organized colloidal template onto a device substrate and sequent heat treatment. Their morphologies and structures are characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectrum analysis. Based on the sensing measurement, it is found that the CuO-ZnO films prepared with the composition of [Cu(2+)]/[Zn(2+)]=0.005, 0.01, and 0.05 all show a nice sensitivity to 10 ppm H2S. Interestingly, three different zones exist in the patterns of gas responses versus H2S concentrations: a platform zone, a rapidly increasing zone, and a slowly increasing zone. Further experiments show that the hybrid CuO-ZnO porous film sensor exhibits shorter recovery time and better selectivity to H2S gas against other interfering gases at a concentration of 10 ppm. These new sensing properties may be due to a depletion layer induced by p-n junction between p-type CuO and n-type ZnO and high chemical activity of CuO to H2S. This work will provide a new construction route of ZnO-based sensing materials, which can be used as H2S sensors with high performances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201304722 | DOI Listing |
Chemistry
May 2014
Key Lab of Materials Physics Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (P.R. China), Fax: (+86) 551-65591434.
CuO-ZnO micro/nanoporous array-films are synthesized by transferring a solution-dipped self-organized colloidal template onto a device substrate and sequent heat treatment. Their morphologies and structures are characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectrum analysis. Based on the sensing measurement, it is found that the CuO-ZnO films prepared with the composition of [Cu(2+)]/[Zn(2+)]=0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!