Occurrence of plasmids in the aromatic degrading bacterioplankton of the baltic sea.

Genes (Basel)

Chair of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia Street 23, Tartu 51010, Estonia.

Published: November 2011

Plasmids are mobile genetic elements that provide their hosts with many beneficial traits including in some cases the ability to degrade different aromatic compounds. To fulfill the knowledge gap regarding catabolic plasmids of the Baltic Sea water, a total of 209 biodegrading bacterial strains were isolated and screened for the presence of these mobile genetic elements. We found that both large and small plasmids are common in the cultivable Baltic Sea bacterioplankton and are particularly prevalent among bacterial genera Pseudomonas and Acinetobacter. Out of 61 plasmid-containing strains (29% of all isolates), 34 strains were found to carry large plasmids, which could be associated with the biodegradative capabilities of the host bacterial strains. Focusing on the diversity of IncP-9 plasmids, self-transmissible m-toluate (TOL) and salicylate (SAL) plasmids were detected. Sequencing the repA gene of IncP-9 carrying isolates revealed a high diversity within IncP-9 plasmid family, as well as extended the assumed bacterial host species range of the IncP-9 representatives. This study is the first insight into the genetic pool of the IncP-9 catabolic plasmids in the Baltic Sea bacterioplankton.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3927600PMC
http://dx.doi.org/10.3390/genes2040853DOI Listing

Publication Analysis

Top Keywords

baltic sea
16
mobile genetic
8
genetic elements
8
catabolic plasmids
8
plasmids baltic
8
bacterial strains
8
sea bacterioplankton
8
diversity incp-9
8
plasmids
7
incp-9
5

Similar Publications

Tan spot caused by is a severe threat to wheat production in all major wheat-growing regions. Sustainable tan spot control can be achieved by an integrated approach, including responsible management of fungicide sprays. The data about the sensitivity of to various fungicides in the Baltic Sea region are rare.

View Article and Find Full Text PDF

In this study, the results of a comprehensive assessment of the variability in the occurrence of ten perfluorinated compounds (PFAS) in fish tissues originating from 2014 to 2019 from six fisheries in the Baltic Sea are presented. A total of 360 fish samples of three species (perch, herring and flatfish) were analysed. For the determination of PFAS, both linear and branched stereoisomers, LC-ESI-MS/MS technique preceded by simultaneous SPE isolation was validated and applied.

View Article and Find Full Text PDF

Dynamics of spp. Biomass and Environmental Variability: A Case Study in the Neva Estuary (The Easternmost Baltic Sea).

Biology (Basel)

November 2024

Zoological Institute of Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint-Petersburg, Russia.

Predicting which non-indigenous species (NISs) will establish persistent invasive populations and cause significant ecosystem changes remains an important environmental challenge. We analyzed the spatial and temporal dynamics of the entire zoobenthos and the biomass of spp., one of the most successful invaders in the Baltic Sea, in the Neva estuary in 2014-2023.

View Article and Find Full Text PDF

Dormancy is a wide-spread key life history trait observed across the tree of life. Many plankton species form dormant cells stages that accumulate in aquatic sediments and under anoxic conditions, form chronological records of past species and population dynamics under changing environmental conditions. Here we report on the germination of a microscopic alga, the abundant marine diatom Skeletonema marinoi that had remained dormant for up to 6871 ± 140 years in anoxic sediments of the Baltic Sea and resumed growth when exposed to oxygen and light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!