A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972674 | PMC |
http://dx.doi.org/10.3390/cells2030506 | DOI Listing |
Sensors (Basel)
December 2024
School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK.
Poaching poses a significant threat to wildlife and their habitats, necessitating advanced tools for its prediction and prevention. Existing tools for poaching prediction face challenges such as inconsistent poaching data, spatiotemporal complexity, and translating predictions into actionable insights for conservation efforts. This paper presents PoachNet, a novel predictive system that integrates deep learning with Semantic Web reasoning to infer poaching likelihood.
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
In populations of small effective size (N), such as those in conservation programmes, companion animals or livestock species, inbreeding control is essential. Homozygosity-by-descent (HBD) segments provide relevant information in that context, as they allow accurate estimation of the inbreeding coefficient, provide locus-specific information and their length is informative about the "age" of inbreeding. Our objective was to evaluate tools for predicting HBD in future offspring based on parental genotypes, a problem equivalent to identifying segments identical-by-descent (IBD) among the four parental chromosomes.
View Article and Find Full Text PDFUnlabelled: Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.
View Article and Find Full Text PDFInterdiscip Sci
January 2025
School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
Metabolism in vivo turns small molecules (e.g., drugs) into metabolites (new molecules), which brings unexpected safety issues in drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!