Mechanotransduction and fibrosis.

J Biomech

Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA. Electronic address:

Published: June 2014

Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. A thorough understanding of the various signaling pathways involved is essential to formulate strategies to combat fibrosis and scarring. While initial efforts focused primarily on the biochemical mechanisms involved in scar formation, more recent research has revealed a central role for mechanical forces in modulating these pathways. Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425300PMC
http://dx.doi.org/10.1016/j.jbiomech.2014.03.031DOI Listing

Publication Analysis

Top Keywords

scar formation
12
fibrosis scarring
8
mechanisms underlying
8
mechanical forces
8
mechanotransduction fibrosis
4
scarring tissue
4
tissue fibrosis
4
fibrosis represent
4
represent source
4
source morbidity
4

Similar Publications

The globally prevalent rotator cuff tear has a high re-rupture rate, attributing to the failure to reproduce the interfacial fibrocartilaginous enthesis. Herein, a hierarchically organized membrane is developed that mimics the heterogeneous anatomy and properties of the natural enthesis and finely facilitates the reconstruction of tendon-bone interface. A biphasic membrane consisting of a microporous layer and a mineralized fibrous layer is constructed through the non-solvent induced phase separation (NIPS) strategy followed by a co-axial electrospinning procedure.

View Article and Find Full Text PDF

Potential implications of granzyme B in keloids and hypertrophic scars through extracellular matrix remodeling and latent TGF-β activation.

Front Immunol

January 2025

International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.

Keloid scars (KS) and hypertrophic scars (HS) are fibroproliferative wound healing defects characterized by excessive accumulation of extracellular matrix (ECM) in the dermis of affected individuals. Although transforming growth factor (TGF)-β is known to be involved in the formation of KS and HS, the molecular mechanisms responsible for its activation remain unclear. In this study we investigated Granzyme B (GzmB), a serine protease with established roles in fibrosis and scarring through the cleavage of ECM proteins, as a potential new mediator of TGF-β activation in KS and HS.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a severe condition that often leads to permanent functional impairments. The current treatment options are limited and there is a need for more effective treatments. Human umbilical cord mesenchymal stem cells (hUCMSCs) have shown promise in promoting neuroregeneration and modulating immune response.

View Article and Find Full Text PDF

The pathophysiological relationship between wound healing impairment and diabetes is an intricate process. Burn injury among diabetes patients leads to neurological, vascular, and immunological abnormalities along with impaired activities of cell proliferation, collagen production, growth factors, and cytokine activities with huge bacterial infestation. In our study, we aimed to achieve a burn wound dressing material with the help of electrospun Chitosan/Polyethylene oxide/Rosmarinic acid (CS/PEO/RA) nanofibers.

View Article and Find Full Text PDF

The activation of astrocytes in the injured lesion induces the progression of spinal cord injury (SCI). However, adverse side-effects during systemic administration have limited applications. Exosomes (Exos) are an emerging clinical treatment method that exerts anti-inflammatory effects by reducing pro-inflammatory factors and promoting functional recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!