Grape pomace was treated by hydrothermal carbonization (sub-critical water, 175-275°C) and torrefaction (nitrogen atmosphere, 250 and 300°C), with mass yield of solid product (char) ranging between 47% and 78%, and energy densification ratio to 1.42-1.15 of the original feedstock. The chars were characterised with respect to their fuel properties, morphological and structural properties and combustion characteristics. The hydrothermal carbonization produced the char with greater energy density than torrefaction. The chars from torrefaction were found to be more aromatic in nature than that from hydrothermal carbonization. Hydrothermal carbonization process produced the char having high combustion reactivity. Most interesting was the finding that aqueous phase from hydrothermal carbonization had antioxidant activity. The results obtained in this study showed that HTC appears to be promising process for a winery waste having high moisture content.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2014.03.052 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China.
Uncontrolled bleeding and infection following trauma continue to pose significant clinical challenges. This study employs hemoadhican (HD) polysaccharide, known for its superior hemostatic properties, as the foundational material to synthesize antibacterial carbon dots (H-CDs) through a hydrothermal method at various temperatures. The H-CDs exhibiting optimal antimicrobial properties were identified via in vitro antimicrobial characterization.
View Article and Find Full Text PDFDalton Trans
January 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Highly effective and efficient remediation of hazardous Ni waste from electroless electroplating wastewater remains a significant challenge. However, rather than regarding it as hazardous waste, Ni-electroplating wastewater can instead be considered a huge resource of Ni. Herein, we report a convenient hydrothermal strategy for upcycling Ni from nickel-electroplating wastewater into a carbon-doped Ni-P alloy (denoted as C/Ni-P) electrocatalyst for the oxidation of glycerol to formate.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China. Electronic address:
Purple passion fruit peel (PPFP) is a common biomass waste. Meanwhile, hydrothermal carbonization (HTC) is a common technology used for thermal conversion of biomass waste. Herein, the aqueous phase (AP) of PPFP was determined using HTC, and its properties were studied.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
A green facile method was developed to synthesize the carbon quantum dots from barberry, a native plant, as a new carbon source. The synthesis strategy is a simple one-step hydrothermal process without requiring hazardous chemical reagents. The spherical structure of b-CDs with an average particle size of 3.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!