Fluorescence-based assays for the cytochrome P450 BM3 monooxygenase from Bacillus megaterium address an attractive biotechnological challenge by facilitating enzyme engineering and the identification of potential substrates of this highly promising biocatalyst. In the current study, we used the scarcity of corresponding screening systems as an opportunity to evaluate a novel and continuous high-throughput assay for this unique enzyme. A set of nine catalytically diverse P450 BM3 variants was constructed and tested toward the native substrate-inspired fluorogenic substrate 12-(4-trifluoromethylcoumarin-7-yloxy)dodecanoic acid. Particularly high enzyme-mediated O-dealkylation yielding the fluorescent product 7-hydroxy-4-trifluoromethylcoumarin was observed with mutants containing the F87V substitution, with A74G/F87V showing the highest catalytic efficiency (0.458 min(-1)μM(-1)). To simplify the assay procedure and show its versatility, different modes of application were successfully demonstrated, including (i) the direct use of NADPH or its oxidized form NADP(+) along with diverse NADPH recycling systems for electron supply, (ii) the use of cell-free lysates and whole-cell preparations as the biocatalyst source, and (iii) its use for competitive inhibition screens to identify or characterize substrates and inhibitors. A detailed comparison with known, fluorescence-based P450 BM3 assays finally emphasizes the relevance of our contribution to the ongoing research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2014.03.022 | DOI Listing |
Enzyme Microb Technol
January 2025
Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:
Inducer-free expression systems are promising tools for biorefinery because they can reduce the reliance on inducers, reducing production costs and simplifying processes. Owing to their broad range of substrate structures and catalytic reactions, cytochrome P450s are promising biocatalysts to produce value-added compounds. However, unsuitable levels of cytochrome P450 expression could result in cell stress, affecting the efficiency of the biocatalyst.
View Article and Find Full Text PDFBiotechnol Lett
November 2024
School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbongro, Gwangju, 61186, Republic of Korea.
The monooxygenase activity of engineered CYP102A1 on α-terpineol was investigated. CYP102A1 M850 mutant (F11Y/R47L/D68G/F81I/F87V/E143G/L188Q/E267V/H408R) showed the highest catalytic activity toward α-terpineol among the engineered mutants produced by random mutagenesis. The major product (P1) of α-terpineol, p-menth-1-ene-3,8-diol, was characterized by high-performance liquid chromatography, gas-chromatography mass spectrometry, and nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFChem Sci
November 2024
Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology 1088 Xueyuan Avenue Shenzhen P. R. China
Biotechnol J
November 2024
MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, P. R. China.
Murideoxycholic acid (MDCA), as a significant secondary bile acid derived from the metabolism of α/β-muricholic acid in rodents, is an important component in maintaining the bile acid homeostasis. However, the biosynthesis of MDCA remains a challenging task. Here, we present the development of cytochrome P450 monooxygenase CYP102A1 (P450 BM3) from Bacillus megaterium, employing semi-rational protein engineering technique.
View Article and Find Full Text PDFChembiochem
November 2024
State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
(+)-Bicyclogermacrene is a sesquiterpene compound found in various plant essential oils and serves as a crucial precursor for multiple biologically active compounds. Many derivatives of (+)-bicyclogermacrene have been shown to exhibit valuable bioactivities. Cytochrome P450 BM3 from Bacillus megaterium can catalyze a variety of substrates and different types of oxidation reactions, making it become a powerful tool for oxidizing terpenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!