Background: Diastolic dysfunction is a key factor in the development and pathology of cardiac dysfunction in diabetes, however the exact underlying mechanism remains unknown, especially in humans. We aimed to measure contraction, relaxation, expression of calcium-handling proteins and fibrosis in myocardium of diabetic patients with preserved systolic function.

Methods: Right atrial appendages from patients with type 2 diabetes mellitus (DM, n = 20) and non-diabetic patients (non-DM, n = 36), all with preserved ejection fraction and undergoing coronary artery bypass grafting (CABG), were collected. From appendages, small cardiac muscles, trabeculae, were isolated to measure basal and β-adrenergic stimulated myocardial function. Expression levels of calcium-handling proteins, sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and phospholamban (PLB), and of β1-adrenoreceptors were determined in tissue samples by Western blot. Collagen deposition was determined by picro-sirius red staining.

Results: In trabeculae from diabetic samples, contractile function was preserved, but relaxation was prolonged (Tau: 74 ± 13 ms vs. 93 ± 16 ms, non-DM vs. DM, p = 0.03). The expression of SERCA2a was increased in diabetic myocardial tissue (0.75 ± 0.09 vs. 1.23 ± 0.15, non-DM vs. DM, p = 0.007), whereas its endogenous inhibitor PLB was reduced (2.21 ± 0.45 vs. 0.42 ± 0.11, non-DM vs. DM, p = 0.01). Collagen deposition was increased in diabetic samples. Moreover, trabeculae from diabetic patients were unresponsive to β-adrenergic stimulation, despite no change in β1-adrenoreceptor expression levels.

Conclusions: Human type 2 diabetic atrial myocardium showed increased fibrosis without systolic dysfunction but with impaired relaxation, especially during β-adrenergic challenge. Interestingly, changes in calcium-handling protein expression suggests accelerated active calcium re-uptake, thus improved relaxation, indicating a compensatory calcium-handling mechanism in diabetes in an attempt to maintain diastolic function at rest despite impaired relaxation in the diabetic fibrotic atrial myocardium. Our study addresses important aspects of the underlying mechanisms of diabetes-associated diastolic dysfunction, which is crucial to developing new therapeutic treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3997226PMC
http://dx.doi.org/10.1186/1475-2840-13-72DOI Listing

Publication Analysis

Top Keywords

impaired relaxation
12
atrial myocardium
12
diabetic patients
12
calcium-handling protein
8
diabetic
8
type diabetic
8
patients preserved
8
preserved ejection
8
ejection fraction
8
diastolic dysfunction
8

Similar Publications

Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome.

PLoS Pathog

January 2025

State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.

Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors.

View Article and Find Full Text PDF

Does music counteract mental fatigue? A systematic review.

PLoS One

January 2025

Department of Sport Studies, Faculty of Education Studies, Universiti Putra Malaysia, Selangor, Malaysia.

Introduction: Mental fatigue, a psychobiological state induced by prolonged and sustained cognitive tasks, impairs both cognitive and physical performance. Several studies have investigated strategies to counteract mental fatigue. However, potential health risks and contextual restrictions often limit these strategies, which hinder their practical application.

View Article and Find Full Text PDF

Background: Elevated iron in brain is a source of free radicals that causes oxidative stress which has been linked to neuropathologies and cognitive impairment among older adults. The aim of this study was to investigate the association of iron levels with transverse relaxation rate, R, and white matter hyperintensities (WMH), independent of the effects of other metals and age-related neuropathologies.

Method: Cerebral hemispheres from 437 older adults participating in the Rush Memory and Aging Project study (Table 1) were imaged ex-vivo using 3T MRI scanners.

View Article and Find Full Text PDF

Background: Impaired interstitial fluid drainage in the brain is indicated by the presence of perivascular β-amyloid (Aβ) deposits and is attributed to alterations in contractility and relaxation of vascular smooth muscle cells (SMCs). The brain microvasculature in Alzheimer disease (AD) accumulates amyloid-forming amylin secreted from the pancreas. Here, we tested the hypothesis that cerebrovascular amylin deposits perturbs cerebral Aβ efflux by impairing cerebral vasodilation.

View Article and Find Full Text PDF

Skeletal muscle relaxants have their place in everyday use in numerous anesthesiological procedures, such as preparing a patient for surgery, supporting mechanical ventilation, and performing effective intubation. These drugs can be divided, based on their mechanism of action, into depolarizing skeletal relaxants, such as succinylcholine, and non-depolarizing skeletal muscle relaxants. Non-depolarizing agents are further categorized, based on their structure, into steroidal (eg, rocuronium) and benzylisoquinoline (eg, atracurium) compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!