Background: Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene.Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane.

Results: The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences.Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures.Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes.In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues.

Conclusions: We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021088PMC
http://dx.doi.org/10.1186/1471-2229-14-92DOI Listing

Publication Analysis

Top Keywords

renilla luciferase
28
firefly luciferase
20
luciferase
16
reporter genes
16
native firefly
16
firefly renilla
16
luciferase reporter
12
coding sequences
12
firefly
9
synthetic versions
8

Similar Publications

DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.

View Article and Find Full Text PDF

Pretargeted Multimodal Tumor Imaging by Enzymatic Self-Immobilization Labeling and Bioorthogonal Reaction.

J Am Chem Soc

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.

Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .

View Article and Find Full Text PDF

The bioluminescent European brittle star Amphiura filiformis produces blue light at the arm-spine level thanks to a biochemical reaction involving coelenterazine as substrate and a Renilla-like luciferase as an enzyme. This echinoderm light production depends on a trophic acquisition of the coelenterazine substrate. Without an exogenous supply of coelenterazine, this species loses its luminous capabilities.

View Article and Find Full Text PDF

Minigenomes (MGs) have greatly advanced research on the viral life cycle, including viral replication and transcription, virus‒host interactions, and the discovery of antivirals against RNA viruses. However, an MG for infectious bursal disease virus (IBDV) has not been well established. Here, we describe the development of IBDV MG, in which the entire coding sequences of viral genomic segments A and B are replaced with Renilla luciferase (Rluc) or enhanced green fluorescent protein (EGFP) reporter genes.

View Article and Find Full Text PDF
Article Synopsis
  • Bioluminescent high-throughput screening (HTS) assays using firefly, Renilla, and NanoLuc luciferases are essential tools in research and drug discovery, but can be affected by various metal ions present in biological and environmental samples.
  • A study screened 21 metal ions in three different HTS assays, quantifying their interference with luminescence signals and developing optimized buffer variants for better luciferase performance.
  • Findings showed that metal ions significantly impacted bioluminescence signals in a way that correlates with known metal ion-ligand affinities, indicating complex interactions that vary depending on the type of luciferase and assay conditions used.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!