Efficacy of antidotes (midazolam, atropine and HI-6) on nerve agent induced molecular and neuropathological changes.

BMC Neurosci

Biochemistry Division, Defence Research and Development Establishment, Jhansi road, Gwalior, MP, India.

Published: April 2014

Background: Recent alleged attacks with nerve agent sarin on civilians in Syria indicate their potential threat to both civilian and military population. Acute nerve agent exposure can cause rapid death or leads to multiple and long term neurological effects. The biochemical changes that occur following nerve agent exposure needs to be elucidated to understand the mechanisms behind their long term neurological effects and to design better therapeutic drugs to block their multiple neurotoxic effects. In the present study, we intend to study the efficacy of antidotes comprising of HI-6 (1-[[[4-(aminocarbonyl)-pyridinio]-methoxy]-methyl]-2-[(hydroxyimino) methyl] pyridinium dichloride), atropine and midazolam on soman induced neurodegeneration and the expression of c-Fos, Calpain, and Bax levels in discrete rat brain areas.

Results: Therapeutic regime consisting of HI-6 (50 mg/kg, i.m), atropine (10 mg/kg, i.m) and midazolam (5 mg/kg, i.m) protected animals against soman (2×LD50, s.c) lethality completely at 2 h and 80% at 24 h. HI-6 treatment reactivated soman inhibited plasma and RBC cholinesterase up to 40%. Fluoro-Jade B (FJ-B) staining of neurodegenerative neurons showed that soman induced significant necrotic neuronal cell death, which was reduced by this antidotal treatment. Soman increased the expression of neuronal proteins including c-Fos, Bax and Calpain levels in the hippocampus, cerebral cortex and cerebellum regions of the brain. This therapeutic regime also reduced the soman induced Bax, Calpain expression levels to near control levels in the different brain regions studied, except a mild induction of c-Fos expression in the hippocampus.

Conclusion: Rats that received antidotal treatment after soman exposure were protected from mortality and showed reduction in the soman induced expression of c-Fos, Bax and Calpain and necrosis. Results highlight the need for timely administration of better antidotes than standard therapy in order to prevent the molecular and biochemical changes and subsequent long term neurological effects induced by nerve agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984638PMC
http://dx.doi.org/10.1186/1471-2202-15-47DOI Listing

Publication Analysis

Top Keywords

nerve agent
16
soman induced
16
long term
12
term neurological
12
neurological effects
12
bax calpain
12
efficacy antidotes
8
agent exposure
8
biochemical changes
8
soman
8

Similar Publications

Metformin ameliorates peripheral neuropathy in diabetic rats by downregulating autophagy via the AMPK pathway.

Arch Endocrinol Metab

January 2025

Fuzhou First General Hospital Affiliated with Fujian Medical University Department of Endocrinology FuzhouFujian China Department of Endocrinology, Fuzhou First General Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China.

Objective: Diabetic neuropathy (DN) is an important complication of diabetes mellitus. Autophagy is considered to be potentially involved in the regulation of DN. Metformin is broadly utilized in the first-line treatment of diabetes.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Aim: The objective of the present study is to assess and compare the effectiveness of two different anesthetic agents, namely, 4% articaine and 2% lignocaine, in the extraction of primary molar teeth in children.

Materials And Methods: The study included 25 children requiring bilateral extractions of primary molar, with extraction performed on one side with 4% articaine and the contralateral side extraction with 2% lignocaine at two separate appointments. The anesthetic efficacy was evaluated objectively by assessing pain and the child's behavior at baseline, during injection and during extraction using the sound, eye, and motor (SEM) scale objectively, and subjectively using the faces pain rating scale (FPS).

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

The autonomic nervous system plays a crucial role in regulating physiological processes and maintaining homeostasis through its two branches: the sympathetic nervous system (SNS) and the parasympathetic nervous system. Dysregulation of the autonomic system, characterized by increased sympathetic activity and reduced parasympathetic tone, is a common feature in chronic kidney disease (CKD) and cardiovascular disease. This imbalance contributes to a pro-inflammatory state, exacerbating disease progression and increasing the risk for cardiovascular events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!