Despite the predominance of sleep in early infancy, developmental science has yet to play a major role in shaping concepts and theories about sleep and its associated ultradian and circadian rhythms. Here we argue that developmental analyses help us to elucidate the relative contributions of the brainstem and forebrain to sleep-wake control and to dissect the neural components of sleep-wake rhythms. Developmental analysis also makes it clear that sleep-wake processes in infants are the foundation for those of adults. For example, the infant brainstem alone contains a fundamental sleep-wake circuit that is sufficient to produce transitions among wakefulness, quiet sleep, and active sleep. In addition, consistent with the requirements of a "flip-flop" model of sleep-wake processes, this brainstem circuit supports rapid transitions between states. Later in development, strengthening bidirectional interactions between the brainstem and forebrain contribute to the consolidation of sleep and wake bouts, the elaboration of sleep homeostatic processes, and the emergence of diurnal or nocturnal circadian rhythms. The developmental perspective promoted here critically constrains theories of sleep-wake control and provides a needed framework for the creation of fully realized computational models. Finally, with a better understanding of how this system is constructed developmentally, we will gain insight into the processes that govern its disintegration due to aging and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062979 | PMC |
http://dx.doi.org/10.1037/a0035891 | DOI Listing |
J Neural Transm (Vienna)
January 2025
Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, Essen University Medical School, University of Duisburg-Essen, 45147, Essen, Germany.
Attention-deficit/hyperactivity disorder (ADHD) is a frequently observed condition, with about 70% of individuals diagnosed with ADHD experiencing irregular sleep-wake patterns. Beyond the primary symptoms of ADHD, there is a significant overlap with sleep-related issues, indicating that disrupted sleep patterns may exacerbate ADHD symptoms. ADHD-related sleep problems can be traced to a delayed circadian rhythm and a later onset of melatonin production.
View Article and Find Full Text PDFJ Biol Rhythms
January 2025
Colorado School of Mines, Golden, Colorado.
Circadian rhythms, intrinsic 24-h cycles that drive rhythmic changes in behavior and physiology, are important for normal physiology and health. Previous work in adults has identified sex differences in circadian rhythms of melatonin, temperature, and the intrinsic period of the human circadian timing system. However, less is known about sex differences in circadian rhythms at other developmental stages.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Faculty of Health Sciences, Universidad Autónoma de Chile, Providencia, Chile. Electronic address:
It is well established that sleep promotes health and welfare. Literature data suggests that sleep is a recurrent resting state that performs multiple biological functions, such as memory consolidation and regulation of glucose, lipid metabolism, energy metabolism, eating behavior, and blood pressure, besides, regulating the immune system. These immunological functions depend on regular sleep and circadian rhythms, as both impact the magnitude of immune responses.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Department of Health and Society, School of Public Health, University of São Paulo, São Paulo, Brazil. Electronic address:
Shift work sleep disorder (SWSD) is a circadian rhythm sleep-wake disorders affecting individuals who work in nonstandard hours, particularly night shifts. It manifests as difficulty sleeping during the day and staying awake during work hours, leading to health issues. SWSD is not universally experienced by all shift workers, with about 30% affected.
View Article and Find Full Text PDFHandb Clin Neurol
January 2025
Massachusetts General Hospital, Boston, MA, United States.
Irregular sleep-wake rhythm disorder (ISWRD) is an intrinsic circadian rhythm disorder caused by loss of the brain's circadian regulation, through changes of the input and/or output to the suprachiasmatic nucleus (SCN), or of the SCN itself. Although there are limited prevalence data for this rare disease, ISWRD is associated with neurodegenerative disorders, including the Alzheimer disease (AD) and the Parkinson disease (PD), which will become increasingly prevalent in an aging population. It additionally presents in childhood developmental disorders, psychiatric disorders, and traumatic brain injury (TBI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!