Background And Aim: Zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials (NMs) are used in many consumer products, including foodstuffs. Ingested and inhaled NM can reach the liver. Whilst their effects on inflammation, cytotoxicity, genotoxicity and mitochondrial function have been explored, no work has been reported on their impact on liver intermediary metabolism. Our aim was to assess the effects of sub-lethal doses of these materials on hepatocyte intermediary metabolism.
Material And Methods: After characterisation, ZnO and TiO2 NM were used to treat C3A cells for 4 hours at concentrations ranging between 0 and 10 μg/cm(2), well below their EC50, before the assessment of (i) glucose production and glycolysis from endogenous glycogen and (ii) gluconeogenesis and glycolysis from lactate and pyruvate (LP). Mitochondrial membrane potential was assessed using JC-10 after 0-40 μg/cm(2) ZnO. qRT-PCR was used to assess phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression. Dihydroethidium (DHE) staining and FACS were used to assess intracellular reactive oxygen species (ROS) concentration.
Results: Treatment of cells with ZnO, but not TiO2, depressed mitochondrial membrane potential, leading to a dose-dependent increase in glycogen breakdown by up to 430%, with an increase of both glycolysis and glucose release. Interestingly, gluconeogenesis from LP was also increased, up to 10-fold and correlated with a 420% increase in the PEPCK mRNA expression, the enzyme controlling gluconeogenesis from LP. An intracellular increase of ROS production after ZnO treatment could explain these effects.
Conclusion: At sub-lethal concentrations, ZnO nanoparticles dramatically increased both gluconeogenesis and glycogenolysis, which warrants further in vivo studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/17435390.2014.895437 | DOI Listing |
Chemosphere
January 2025
Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
ZnO and TiO nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Formamide condensation with Ni can generate the NC structure, widely recognized as an efficient catalyst for electrocatalytic CO reduction reaction (CORR). To improve the utilization efficiency of Ni atoms, we introduced metal oxides as substrates to modulate the growth of a formamide-Ni (FA-Ni) condensate. FA-Ni@TiO demonstrated 2.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Physics, Hasanuddin University, Makassar 90245, Indonesia. Electronic address:
TiO/ZnO/Chitosan coated cotton fabric as a self-cleaning, which has been synthesized by various concentrations of TiO: 0.5 g, 1 g, and 2 g through the sol-gel method at pH 9. The self-cleaning test was conducted on TiO/ZnO/Chitosan-coated cotton fabric samples by irradiating for 15 h using UVA-UVB lamps with clothing stain dye.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
Glass system of 45BO-20ZnO-30BaO-5X, (where X represents CaO, MgO, AlO, TiO, CuO and FeO) in mole percentage was investigated for gamma ray radiation shielding experimentally. Six glass composites were fabricated and the density was measured experimentally and the BZBCa glass sample has the least density with a value of 3.932 g cm and this is due to the presence of CaO in it, and the sample BZBFe has the highest density with a value of 4.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Microbiology and Biotechnology, Technical University of Moldova, MD 2028 Chisinau, Moldova.
(1) Background: The widespread use of nanoparticles (NPs) implies their inevitable contact with living organisms, including aquatic microorganisms, making it essential to understand the effects and consequences of this interaction. Understanding the adaptive responses and biochemical changes in microalgae and cyanobacteria under NP-induced stress is essential for developing biotechnological strategies that optimize biomolecule production while minimizing potential toxicity. This study aimed to evaluate the interactions between various potentially toxic nanoparticles and the cyanobacterial strain , focusing on the biological adaptations and biochemical mechanisms that enable the organism to withstand xenobiotic exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!