Cesium adsorption onto Illite has been widely studied, because this clay is especially relevant for Cs migration-retention in the environment. The objective of this study is to analyze how Cs adsorption onto Illite is affected by structural changes produced by the presence of different exchangeable cations--and specifically interlayer collapse. Cs sorption isotherms were carried out with Illite previously exchanged with Na, K, or Ca, at a broad enough range of ionic strength, for the determination of the possible affect of the electrolyte on the structure of Illite. In the presence of Ca, the maximum sorbed Cs was unexpectedly high (900 mequiv · kg(-1)) given the cationic exchange capacity commonly accepted for Illite (near 200 mequiv · kg(-1)). This was explained by the expansion of Illite layers (decollapse) induced by large hydrated cations such as Ca(2+) that may facilitate cation uptake--especially Cs(+), which is a highly selective cation. In the presence of Ca (and most probably of other divalent cations), Cs accessibility to exchange positions is increased. Both experimental evidence and the modeling of Cs sorption onto Illite supported the hypothesis of decollapse. Our results demonstrate the requirement of accounting for Illite decollapse especially for high Cs loadings, because of the potential prediction errors for its migration. Ignoring the Illite decollapse could lead the biased estimation of selectivity coefficients and consequently the erroneous prediction of sorption/migration behavior of Cs, and possibly other contaminants, in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es5003346 | DOI Listing |
RSC Adv
November 2024
Faculty of Sciences of Bizerte, LR 05/ES09 Laboratory of Applications of Chemistry to Resources and Natural Substances and to the Environment (LACReSNE), Carthage University Zarzouna 7021 Tunisia
This study seeks to characterize three different clays and compare their capability to decontaminate a textile effluent using the adsorption process and to explore the synergistic effects of ozonation on the treatment. Response surface methodology, based on central composite design, was used to investigate the impact of three key parameters, namely, solution pH, clay dosage, and contact time, on the adsorption process. The three clays were sourced from distinct regions across Tunisia: Rommana, Tabarka, and Medenine.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo 315200, China. Electronic address:
In the study, cotransport of fullerene nanoparticles (nC) and mobile clay colloids (illite (ILL), kaolinite (KL), montmorillonite (ML)) in aquifer porous media and its relation to the aggregative interaction between these two types of particles was investigated. Minimal interaction occurred between nC and ILL, resulting in unaffected transport. Strong heteroaggregation between ML and nC resulted in not only significant retention of both particles during their cotransport but also the retention of nC in the media pre-injected with ML.
View Article and Find Full Text PDFACS Omega
November 2024
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.
The pore throat structure and microheterogeneous wettability of tight sandstone reservoirs are complex, which leads to varying asphaltene precipitation locations, contents, and distributions in different pores during CO flooding. Clarifying the heterogeneous wettability of different pore throat structures and their effects on asphaltene precipitation and adsorption is crucial for improving CO displacement efficiency. A series of experiments were conducted in this study, including X-ray diffraction (XRD), cast thin section (CTS), field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion (HPMI), environmental scanning electron microscopy (E-SEM), nuclear magnetic resonance (NMR), and CO flooding experiments, to investigate the pore structure complexity of tight sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China.
View Article and Find Full Text PDFPore structure can affect the reservoir property, petrophysics, and fluid migration/adsorption, which is critical for shale evaluation and development. In this paper, the pore structure, fractal characteristics, and their influencing factors on low-resistivity shale (LRS) from the Longmaxi Formation in the Southern Sichuan Basin were analyzed by combining geochemistry experiments, physical property analysis, X-ray diffraction, scanning electron microscopy (SEM), N/CO gas adsorption experiments, and nuclear magnetic resonance (NMR). The results indicate that in LRS, the layered clay mineral/pyrite distribution and more developed pores with a larger size and better connectivity can build a complex and superior conductive network.
View Article and Find Full Text PDFSci Total Environ
December 2024
Frontiers Science Center for Rare Isotopes, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China.
The environmental fate of strontium (Sr) and cesium (Cs), as the critical radioactive fission products, have raised significant concerns regarding radioactive waste disposal and environmental protection. The current study investigated the distinction in the binding configurations of Sr and Cs on various 2:1 phyllosilicate (illite, vermiculite, and montmorillonite) by combining batch adsorption, sequential extraction, and spectroscopic analyses. The results show that strontium adsorption is strongly influenced by pH as well as ionic strength, while there is no significant variability in strontium adsorption by different types of clay minerals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!