Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei.

J Parasitol Res

Biomedical and Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.

Published: April 2014

AI Article Synopsis

  • African Trypanosomiasis is a severe neglected tropical disease that negatively affects economic growth and is fatal if untreated.
  • Heat shock proteins Hsp70 and Hsp40, crucial for cell function in the Trypanosoma brucei parasite, help it adapt from insect to mammalian hosts.
  • Research focused on the novel cytosolic Hsp70, TbHsp70.c, and its co-chaperone Tbj2 revealed their combined chaperone activities, including enhanced ATPase activity and upregulation under heat stress, contributing to a better understanding of the parasite's biology.

Article Abstract

The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70) is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953656PMC
http://dx.doi.org/10.1155/2014/172582DOI Listing

Publication Analysis

Top Keywords

trypanosoma brucei
12
tbhsp70c tbj2
12
heat shock
8
shock protein
8
tbhsp70c
8
co-chaperone tbhsp70c
8
tbj2
5
investigating chaperone
4
chaperone properties
4
properties novel
4

Similar Publications

Background: Rapid diagnostic tests for the serological detection of gambiense human African trypanosomiasis (gHAT) have been developed to overcome the limitations of the traditional screening method, CATT/T. b. gambiense.

View Article and Find Full Text PDF

Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes.

Nat Commun

December 2024

Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.

The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing.

View Article and Find Full Text PDF

Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic transcription units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and changes in gene expression are entirely post-transcriptional. is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans.

View Article and Find Full Text PDF

Initiation of protein translation is one of the key steps in protein synthesis carried out by translation initiation factors in conjunction with ribosomes. The roles and mechanisms of these initiation factors in prokaryotic and eukaryotic protein synthesis are well understood. However, they are only beginning to be understood in trypanosomatids.

View Article and Find Full Text PDF

Therapeutic potential of Indonesian plant extracts in combating malaria and protozoan neglected tropical disease.

BMC Complement Med Ther

December 2024

Center of Natural Product Medicine Research and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.

Background: Neglected tropical diseases (NTDs) afflict nearly 2 billion people worldwide and are caused by various pathogens, such as bacteria, protozoa, and trypanosoma, prevalent in tropical and subtropical regions. Among the 17 NTDs recognized by the World Health Organization (WHO), protozoal infections caused by Plasmodium, Entamoeba, Leishmania, and Trypanosoma are particularly prominent and pose significant public health. Indonesia, endowed with a rich biodiversity owing to its tropical climate, harbors numerous plant species with potent biological activities that hold promise for therapeutic interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!