Type 2 diabetes mellitus (T2DM) significantly increases risk for vascular complications. Diabetes-induced aorta pathological changes are predominantly attributed to oxidative stress. Nuclear factor E2-related factor-2 (Nrf2) is a transcription factor orchestrating antioxidant and cytoprotective responses to oxidative stress. Sulforaphane protects against oxidative damage by increasing Nrf2 expression and its downstream target genes. Here we explored the protective effect of sulforaphane on T2DM-induced aortic pathogenic changes in C57BL/6J mice which were fed with high-fat diet for 3 months, followed by a treatment with streptozotocin at 100 mg/kg body weight. Diabetic and nondiabetic mice were randomly divided into groups with and without 4-month sulforaphane treatment. Aorta of T2DM mice exhibited significant increases in the wall thickness and structural derangement, along with significant increases in fibrosis (connective tissue growth factor and transforming growth factor), inflammation (tumor necrosis factor-α and vascular cell adhesion molecule 1), oxidative/nitrative stress (3-nitrotyrosine and 4-hydroxy-2-nonenal), apoptosis, and cell proliferation. However, these pathological changes were significantly attenuated by sulforaphane treatment that was associated with a significant upregulation of Nrf2 expression and function. These results suggest that sulforaphane is able to upregulate aortic Nrf2 expression and function and to protect the aorta from T2DM-induced pathological changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953421PMC
http://dx.doi.org/10.1155/2014/123963DOI Listing

Publication Analysis

Top Keywords

nrf2 expression
16
expression function
12
pathological changes
12
associated upregulation
8
upregulation nrf2
8
oxidative stress
8
sulforaphane treatment
8
growth factor
8
sulforaphane
6
nrf2
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!