EphA7 signaling guides cortical dendritic development and spine maturation.

Proc Natl Acad Sci U S A

Departments of Biology and Pharmacology and Physiology, Interdisciplinary Program in Neuroscience, and Graduate Program in Physiology and Biophysics, Georgetown University, Washington, DC 20057.

Published: April 2014

The process by which excitatory neurons are generated and mature during the development of the cerebral cortex occurs in a stereotyped manner; coordinated neuronal birth, migration, and differentiation during embryonic and early postnatal life are prerequisites for selective synaptic connections that mediate meaningful neurotransmission in maturity. Normal cortical function depends upon the proper elaboration of neurons, including the initial extension of cellular processes that lead to the formation of axons and dendrites and the subsequent maturation of synapses. Here, we examine the role of cell-based signaling via the receptor tyrosine kinase EphA7 in guiding the extension and maturation of cortical dendrites. EphA7, localized to dendritic shafts and spines of pyramidal cells, is uniquely expressed during cortical neuronal development. On patterned substrates, EphA7 signaling restricts dendritic extent, with Src and Tsc1 serving as downstream mediators. Perturbation of EphA7 signaling in vitro and in vivo alters dendritic elaboration: Dendrites are longer and more complex when EphA7 is absent and are shorter and simpler when EphA7 is ectopically expressed. Later in neuronal maturation, EphA7 influences protrusions from dendritic shafts and the assembling of synaptic components. Indeed, synaptic function relies on EphA7; the electrophysiological maturation of pyramidal neurons is delayed in cultures lacking EphA7, indicating that EphA7 enhances synaptic function. These results provide evidence of roles for Eph signaling, first in limiting the elaboration of cortical neuronal dendrites and then in coordinating the maturation and function of synapses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977303PMC
http://dx.doi.org/10.1073/pnas.1323793111DOI Listing

Publication Analysis

Top Keywords

epha7 signaling
12
epha7
11
dendritic shafts
8
cortical neuronal
8
synaptic function
8
maturation
6
cortical
5
dendritic
5
signaling guides
4
guides cortical
4

Similar Publications

Unlabelled: Rhabdomyosarcoma (RMS) is a tumor which resembles skeletal muscle. Current treatments are limited to surgery and non-targeted chemotherapy, highlighting the need for alternative therapies. Differentiation therapy uses molecules that act to shift the tumor cells' phenotype from proliferating to differentiated, which in the case of skeletal muscle includes exit from the cell cycle and potentially fusion into myofibers.

View Article and Find Full Text PDF

The study presents a transcriptomics-based liquid biopsy approach for early recurrence detection in locally advanced gastric cancer (LAGC). Four mRNA biomarkers (AGTR1, DNER, EPHA7, and SUSD5) linked to recurrence are identified through transcriptomic data analysis. A Risk Stratification Assessment (RSA) model combining these biomarkers with clinical features showed superior predictive accuracy for postoperative recurrence, with AUCs of 0.

View Article and Find Full Text PDF

EphA-Mediated Regulation of Stomatin Expression in Prostate Cancer Cells.

Cancer Med

October 2024

Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.

Background And Aims: Tumor growth and progression are affected by interactions between tumor cells and stromal cells within the tumor microenvironment. We previously showed that the expression of an integral membrane protein, called stomatin, was increased in cancer cells following their association with stromal cells. Additionally, stomatin impaired the Akt signaling pathway to suppress tumor growth.

View Article and Find Full Text PDF

Introduction: Ph-like ALL has gene expression profile similar to Ph-positive ALL but without the BCR::ABL1 fusion. The disease presents higher rates of severe clinical features and is associated with unfavorable outcomes. There is still no standard pipeline for molecular characterization of the disease, and no valid predictor gene panel is available worldwide.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is complex neurobehavioral condition influenced by several cellular and molecular mechanisms that are often concerned with synaptogenesis and synaptic activity. Based on the excitation/inhibition (E/I) imbalance theory, ASD could be the result of disruption in excitatory and inhibitory synaptic transmission across the brain. The prefrontal cortex (PFC) is the chief regulator of executive function and can be affected by altered neuronal excitation and inhibition in the course of ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!