The Indo-Pacific warm pool houses the largest zone of deep atmospheric convection on Earth and plays a critical role in global climate variations. Despite the region's importance, changes in Indo-Pacific hydroclimate on orbital timescales remain poorly constrained. Here we present high-resolution geochemical records of surface runoff and vegetation from sediment cores from Lake Towuti, on the island of Sulawesi in central Indonesia, that continuously span the past 60,000 y. We show that wet conditions and rainforest ecosystems on Sulawesi present during marine isotope stage 3 (MIS3) and the Holocene were interrupted by severe drying between ∼33,000 and 16,000 y B.P. when Northern Hemisphere ice sheets expanded and global temperatures cooled. Our record reveals little direct influence of precessional orbital forcing on regional climate, and the similarity between MIS3 and Holocene climates observed in Lake Towuti suggests that exposure of the Sunda Shelf has a weaker influence on regional hydroclimate and terrestrial ecosystems than suggested previously. We infer that hydrological variability in this part of Indonesia varies strongly in response to high-latitude climate forcing, likely through reorganizations of the monsoons and the position of the intertropical convergence zone. These findings suggest an important role for the tropical western Pacific in amplifying glacial-interglacial climate variability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3986195 | PMC |
http://dx.doi.org/10.1073/pnas.1402373111 | DOI Listing |
Sci Rep
January 2025
Department of Geoscience, Faculty of Earth Science, Universiti Malaysia Kelantan, Campus Jeli, 17600 Jeli, Kelantan, Malaysia.
Accurately identifying Milankovitch cycles has been a significant challenge in cyclostratigraphic studies, as it is essential for improving geochronology. This manuscript focuses on developing a method that distinguishes Milankovitch cycles from sedimentary noise to enhance stratigraphic precision. Despite their often-conspicuous magnitude, these periodicities frequently intertwine with noise, posing a challenge for conventional spectral analysis.
View Article and Find Full Text PDFISME Commun
January 2024
GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.
Ferruginous conditions prevailed through Earth's early oceans history, yet our understanding of biogeochemical cycles in anoxic iron-rich, sulfate-poor sediments remains elusive in terms of redox processes and organic matter remineralization. Using comprehensive geochemistry, cell counts, and metagenomic data, we investigated the taxonomic and functional distribution of the microbial subsurface biosphere in Lake Towuti, a stratified ferruginous analogue. Below the zone in which pore water becomes depleted in electron acceptors, cell densities exponentially decreased while microbial assemblages shifted from iron- and sulfate-reducing bacterial populations to fermentative anaerobes and methanogens, mostly selecting Bathyarchaeia below the sulfate reduction zone.
View Article and Find Full Text PDFFEMS Microbiol Ecol
November 2024
GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany.
The adaptation of the phylum Chloroflexota to various geochemical conditions is thought to have originated in primitive microbial ecosystems, involving hydrogenotrophic energy conservation under ferruginous anoxia. Oligotrophic deep waters displaying anoxic ferruginous conditions, such as those of Lake Towuti, and their sediments may thus constitute a preferential ecological niche for investigating metabolic versatility in modern Chloroflexota. Combining pore water geochemistry, cell counts, sulfate reduction rates, and 16S rRNA genes with in-depth analysis of metagenome-assembled genomes, we show that Chloroflexota benefit from cross-feeding on metabolites derived from canonical respiration chains and fermentation.
View Article and Find Full Text PDFGeobiology
May 2024
The Institute for Geoscience Research (TIGeR), Western Australia Organic and Isotope Geochemistry Centre (WAOIGC), School of Earth and Planetary Sciences (EPS), Curtin University, Bentley, Western Australia, Australia.
Studying past ecosystems from ancient environmental DNA preserved in lake sediments (sedaDNA) is a rapidly expanding field. This research has mainly involved Holocene sediments from lakes in cool climates, with little known about the suitability of sedaDNA to reconstruct substantially older ecosystems in the warm tropics. Here, we report the successful recovery of chloroplast trnL (UAA) sequences (trnL-P6 loop) from the sedimentary record of Lake Towuti (Sulawesi, Indonesia) to elucidate changes in regional tropical vegetation assemblages during the lake's Late Quaternary paleodepositional history.
View Article and Find Full Text PDFNat Commun
April 2021
GFZ German Research Centre for Geosciences, Potsdam, Germany.
Deposition of ferruginous sediment was widespread during the Archaean and Proterozoic Eons, playing an important role in global biogeochemical cycling. Knowledge of organic matter mineralization in such sediment, however, remains mostly conceptual, as modern ferruginous analogs are largely unstudied. Here we show that in sediment of ferruginous Lake Towuti, Indonesia, methanogenesis dominates organic matter mineralization despite highly abundant reactive ferric iron phases like goethite that persist throughout the sediment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!