The literature data suggest the capacity of biomacromolecules to permeate the human skin, even though such a transdermal permeation appears to be governed by physicochemical parameters which are significantly different compared to those ruling the skin permeation of small molecules. On these grounds, the present study was undertaken to investigate the in vitro diffusion properties through the human epidermis of hyaluronic acid and their sulfates. Low- and medium-molecular-weight hyaluronic acids and the corresponding derivatives at two degrees of sulfation were then tested. In vitro studies evidenced that the sulfated polymers permeate better than the corresponding hyaluronic acid, despite their vastly greater polarity, while the observed permeation markedly decreases when increasing the polymer's molecular weight regardless of the sulfation degree. Using a fluorescent-labeled polysaccharide, it was also evidenced that hyaluronans have a great affinity for corneocytes and likely cross the stratum corneum mainly through a transcellular route. The molecular-dynamics study revealed how the observed permeations for the investigated polysaccharides can be rationalized by monitoring their conformational profiles, since the permeation was found to be directly related to their capacity to assume extended and flexible conformations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.201300130DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
role conformational
4
conformational profile
4
profile polysaccharides
4
polysaccharides skin
4
skin penetration
4
penetration case
4
case hyaluronan
4
hyaluronan sulfates
4
sulfates literature
4

Similar Publications

Sphingosine-1-Phosphate, a Marker of Endothelial Injury and Disease Severity in Preeclampsia.

Hypertension

January 2025

Division of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, Sweden. (C.E., F.P., L.E., S.R.H.).

Background: Preeclampsia is a hypertensive pregnancy disorder marked by endothelial damage. Healthy endothelium is covered by a protective glycocalyx layer, which, when degraded, releases detectable products into the blood. Sphingosine-1-phosphate (S1P) is a cardiovascular biomarker involved in glycocalyx preservation, linked to placentation and preeclampsia development.

View Article and Find Full Text PDF

Cystic degeneration (CD) in the liver is a cyst-like lesion composed of one or more pseudocysts lacking lining cells, occurring spontaneously in rats older than 12 months, with a male predilection. In this study, 32 CDs were identified in 23 out of 104 non-treated, control male Sprague-Dawley rats from two combined chronic toxicity and carcinogenicity studies with agrochemicals. They were examined histologically, histochemically, and immunohistochemically to assess the pathogenesis and pathological significance of CD, focusing on pseudocapillarization in aged rat liver.

View Article and Find Full Text PDF

Background: The increasing demand for noninvasive gluteal augmentation using hyaluronic acid (HA) gel highlights the need for research into its safety and effectiveness. This study aimed to assess the safety and satisfaction levels of patients and physicians regarding HA body filler for buttock enhancement. It also explores variations in outcomes across different injection sites and among different practitioners.

View Article and Find Full Text PDF

The challenge of nerve regeneration stems from the diminished vitality of mature neurons post-injury. The construction of a suitable microenvironment at the injury site to facilitate axonal regeneration is a crucial aspect of nerve injury repair. In this work, a conductive and biocompatible composite material, CP/HA/HGF, is designed by grafting polypyrrole onto chitosan and compounding it with hyaluronic acid and functional short peptides for neural regeneration.

View Article and Find Full Text PDF

Evolved enzymes in the metabolism of biological poly-acids: Applications in otolaryngological biocatalysis.

Int J Biol Macromol

January 2025

Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China. Electronic address:

This study explores evolved Hyaluronidase, Lipase, and Elastase's identification, characterization, and therapeutic potential to enhance tissue regeneration and drug delivery systems in otolaryngology. Hyaluronidase variant H5 exhibited a turnover number (k_cat) of 1500 min, a 200 % increase over wild-type (500 min), demonstrating superior hyaluronic acid degradation. Similarly, lipase variant L2 reached 1200 min (400 min wild-type), and elastase variant E3 showed a turnover of 2200 min (1000 min wild-type).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!