Sumoylation adds a small ubiquitin-like modifier (SUMO) polypeptide to the ε-amino group of a lysine residue. Reminiscent of ubiquitination, sumoylation is catalyzed by an enzymatic cascade composed of E1, E2, and E3. For sumoylation, this cascade uses Ubc9 (ubiquitin conjugating enzyme 9, now officially named ubiquitin conjugating enzyme E2I [UBE2I]) as the sole E2 enzyme. Here, we report that expression of endogenous Ubc9 increases during reprogramming of mouse embryonic fibroblasts (MEFs) into induced pluripotent stem (iPS) cells. In addition, this E2 enzyme is required for reprogramming as its suppression dramatically inhibits iPS cell induction. While Ubc9 knockdown does not affect survival of MEFs and immortalized fibroblasts, Ubc9 is essential for embryonic stem cell (ESC) survival. In addition, we have found that Ubc9 knockdown stimulates apoptosis in ESCs but not in MEFs. Furthermore, the knockdown decreases the expression of the well-known pluripotency marker Nanog and the classical reprogramming factors Klf4, Oct4, and Sox2 in ESCs. Together, these observations indicate that while dispensable for fibroblast survival, the sole SUMO E2 enzyme Ubc9 plays a critical role in reprogramming fibroblasts to iPS cells and maintaining ESC pluripotency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/stem.1600 | DOI Listing |
Macromol Rapid Commun
January 2025
State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.
View Article and Find Full Text PDFRSC Chem Biol
December 2024
Enamine Ltd 78 Winston Churchill Street Kyiv 02094 Ukraine +380 67 656-4026 https://www.enamine.net.
Sortase A-mediated ligation (SML) or "sortagging" has become a popular technology to selectively introduce structurally diverse protein modifications. Despite the great progress in the optimization of the reaction conditions and design of miscellaneous C- or N-terminal protein modification strategies, the reported yields of conjugates are highly variable. In this study, we have systematically investigated C-terminal protein sortagging efficiency using a combination of several rationally selected and modified acceptor proteins and a panel of incoming surrogate non-peptidic amine nucleophile substrates varying in the structural features of their amino linker parts and cargo molecules.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
HRP, or horseradish peroxidase, is a reporter enzyme with extensive use in biotechnological applications. We previously reported the purification and characterization of two anionic peroxidases from L. var (black radish) roots.
View Article and Find Full Text PDFTetrahedron
February 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States.
Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China.
Covalent modification of cell membranes has shown promise for tumor imaging and therapy. However, existing membrane labeling techniques face challenges such as slow kinetics and poor selectivity for cancer cells, leading to off-target effects and suboptimal efficacy. Here, we present an enzyme-triggered self-immobilization labeling strategy, termed E-SIM, which enables rapid and selective labeling of tumor cell membranes with bioorthogonal trans-cycloctene (TCO) handles .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!