Facial expression is a universal means of visual communication in humans and many other primates. Humans have the most complex facial display repertoire among primates; however, gross morphological studies have not found greater complexity in human mimetic musculature. This study examines the microanatomical aspects of mimetic musculature to test the hypotheses related to human mimetic musculature physiology, function, and evolutionary morphology. Samples from the orbicularis oris muscle (OOM) and the zygomaticus major (ZM) muscle in laboratory mice (N = 3), rhesus macaques (N = 3), and humans (N = 3) were collected. Fiber type proportions (slow-twitch and fast-twitch), fiber cross-sectional area, diameter, and length were calculated, and means were statistically compared among groups. Results showed that macaques had the greatest percentage of fast fibers in both muscles (followed by humans) and that humans had the greatest percentage of slow fibers in both muscles. Macaques and humans typically did not differ from one another in morphometrics except for fiber length where humans had longer fibers. Although sample sizes are low, results from this study may indicate that the rhesus macaque OOM and ZM muscle are specialized primarily to assist with maintenance of the rigid dominance hierarchy via rapid facial displays of submission and aggression, whereas human musculature may have evolved not only under pressure to work in facial expressions but also in development of speech.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051843 | PMC |
http://dx.doi.org/10.1002/ar.22913 | DOI Listing |
Aesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1, Shuaifuyuan, Dongcheng District, Beijing, China.
Background: Perioral rejuvenation is challenging due to the lack of spatial anatomical understanding of the labiomandibular fold (LMF). The LMF's formation mechanism remains underexplored due to intricate relationships between musculature and subcutaneous structures. This study aimed to clarify the three-dimensional structures of the LMF using micro-computed tomography and histology.
View Article and Find Full Text PDFAnat Rec (Hoboken)
December 2024
Nocturnal Primate Research Group, School of Social Sciences, Oxford Brookes University, Oxford, UK.
Facial musculature in mammals underlies mastication and nonverbal communicative facial displays. Our understanding of primate facial expression comes primarily from haplorrhines (monkeys and apes), while our understanding of strepsirrhine (lemurs and lorises) facial expression remains incomplete. We examined the facial muscles of six specimens from three Nycticebus species (Nycticebus coucang, Nycticebus javanicus, and Nycticebus menagensis) using traditional dissection methodology and novel three-dimensional facial scanning to produce a detailed facial muscle map, and compared these results to another nocturnal strepsirrhine genus, the greater bushbaby (Otolemur spp.
View Article and Find Full Text PDFAnat Rec (Hoboken)
October 2024
Department of Anatomy, Midwestern University, Glendale, Arizona, USA.
The African wild dog (Lycaon pictus) is a highly social canid that engages in sophisticated, coordinated group hunting tactics to procure large game. It is one of the most effective hunters of the African savannah, due to its highly developed communication methods. It also has large, mobile ears which enhance its auditory capabilities while hunting and assist with thermoregulation.
View Article and Find Full Text PDFCureus
January 2024
Plastic and Reconstructive Surgery, Saint Savvas Hospital, Athens, GRC.
Front Neurorobot
May 2023
Laboratory XoLab, Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), Genova, Italy.
Wearable robots are becoming a valuable solution that helps injured, and elderly people regain mobility and improve clinical outcomes by speeding up the rehabilitation process. The XoSoft exosuit identified several benefits, including improvement of assistance, usability, and acceptance with a soft, modular, bio-mimetic, and quasi-passive exoskeleton. This study compares two assistive configurations: (i) a bilateral hip flexion (HA, hips-assistance) and (ii) a bilateral hip flexion combined with ankle plantarflexion (HAA, hips-ankles-assistance) with the main goal of evaluating compensatory actions and synergetic effects generated by the human- exoskeleton interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!