MiR-324-5p inhibits proliferation of glioma by target regulation of GLI1.

Eur Rev Med Pharmacol Sci

Department of Neurosurgery, the Central Hospital of Xuzhou, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu, People's Republic of China.

Published: April 2015

Objectives: To study the effects of the miR-324-5p on the glioma cells proliferation via the targeted regulation of the glioma-associated oncogene 1.

Methods: The luciferase reporter gene was used to test whether the glioma-associated oncogene 1 was the target of the miR-324-5p microRNA. The glioma-associated oncogene 1 expression was detected by Western blot. The proliferation and cell cycle were evaluated by MTT assay and flow cytometry.

Results: The glioma-associated oncogene 1 is a target of the miR-324-5p. An over-expressed miR-324-5p could reduce the cell survival rate and increase the G1/G0 phase rate in the glioma cell lines.

Conclusions: The miR-324-5p can inhibit proliferation of the glioma cells via the targeted regulation of the glioma-associated oncogene 1.

Download full-text PDF

Source

Publication Analysis

Top Keywords

glioma-associated oncogene
20
proliferation glioma
8
glioma cells
8
targeted regulation
8
regulation glioma-associated
8
oncogene target
8
target mir-324-5p
8
mir-324-5p
6
glioma-associated
5
oncogene
5

Similar Publications

The Role of Gli1 Mesenchymal Stem Cells in Craniofacial Development and Disease Treatment.

J Oral Rehabil

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.

Objective: This review summarises the role of Gli1 (Glioma-associated oncogene homologue 1) mesenchymal stem cells in craniofacial growth and development or tissue repair, and their application in the treatment of some diseases.

Design: The search for this narrative review was conducted in PubMed and Web of Science using relevant keywords, including checking reference lists of journal articles by hand searching.

Results: Gli1 mesenchymal stem cells play an important role in the growth and development of the skull, tooth, periodontium and mandibular condyle.

View Article and Find Full Text PDF

Breast cancer stem cells (CSCs) are resistant to most cancer therapeutics and contribute to tumor recurrence and metastasis. Two breast CSC-promoting transcription factors, truncated glioma-associated oncogene homolog 1 (tGLI1) and signal transducer and activator of transcription 3 (STAT3), have been reported to be frequently co-expressed in HER2-enriched breast cancer and triple-negative breast cancer (TNBC), undergo protein-protein interactions for gene regulation and activation, and functionally cooperate to promote breast CSCs. STAT3 can be activated by activated interleukin-6 receptor/glycoprotein-130 (IL-6R/GP130).

View Article and Find Full Text PDF

The inhibitory effect of L. on adipocyte differentiation can be enhanced by lactic acid bacteria (LAB) fermentation. In this study, we assessed the cellulose resolution, L.

View Article and Find Full Text PDF

Shh Protects the Injured Spinal Cord in Mice by Promoting the Proliferation and Inhibiting the Apoptosis of Nerve Cells via the Gli1-TGF-β1/ERK Axis.

Cell Biochem Funct

January 2025

Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.

View Article and Find Full Text PDF

[Distribution characteristics and proteomic analysis of glioma-associated oncogene homolog 1 positive cells during mouse orthodontic tooth movement].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Xi'an710032, China.

To explore the distribution characteristics of glioma-associated oncogene homolog 1 (Gli1) positive cells during orthodontic tooth movement process and conduct a proteomic analysis of these cells. Forty Gli1-LacZ transgenic mice were used to establish an in orthodontic tooth movement (OTM) model for labeling Gli1 positive cells in Gli1-LacZ transgenic mice (OTM group) and an unforced control group, with tooth movement distance measured using micro-CT. The spatial relationship and distribution characteristics of Gli1 positive cells and H-type vessels of CD31 and endomucin (EMCN) in periodontal tissues were detected by immunofluorescence staining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!