Unlabelled: Epithelial-to-mesenchymal transition (EMT) promotes both tumor progression and drug resistance, yet few vulnerabilities of this state have been identified. Using selective small molecules as cellular probes, we show that induction of EMT greatly sensitizes cells to agents that perturb endoplasmic reticulum (ER) function. This sensitivity to ER perturbations is caused by the synthesis and secretion of large quantities of extracellular matrix (ECM) proteins by EMT cells. Consistent with their increased secretory output, EMT cells display a branched ER morphology and constitutively activate the PERK-eIF2α axis of the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK) activation is also required for EMT cells to invade and metastasize. In human tumor tissues, EMT gene expression correlates strongly with both ECM and PERK-eIF2α genes, but not with other branches of the UPR. Taken together, our findings identify a novel vulnerability of EMT cells, and demonstrate that the PERK branch of the UPR is required for their malignancy.
Significance: EMT drives tumor metastasis and drug resistance, highlighting the need for therapies that target this malignant subpopulation. Our findings identify a previously unrecognized vulnerability of cancer cells that have undergone an EMT: sensitivity to ER stress. We also find that PERK-eIF2α signaling, which is required to maintain ER homeostasis, is also indispensable for EMT cells to invade and metastasize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/2159-8290.CD-13-0945 | DOI Listing |
J Transl Med
January 2025
Department of Gynecology, The Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang, 050000, Hebei, China.
Background: Immune cells within tumor tissues play important roles in remodeling the tumor microenvironment, thus affecting tumor progression and the therapeutic response. The current study was designed to identify key markers of plasma cells and explore their role in high-grade serous ovarian cancer (HGSOC).
Methods: We utilized single-cell sequencing data from the Gene Expression Omnibus (GEO) database to identify key immune cell types within HGSOC tissues and to extract related markers via the Seurat package.
Infect Agent Cancer
January 2025
Shahid Beheshti University of Medical Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
Both women and men are now confronted with the grave threat of cancers caused by the human papillomavirus (HPV). It is estimated that 80% of women may encounter HPV over their lives. In the preponderance of cases involving anal, head and neck, oral, oropharyngeal, penile, vaginal, vulvar, and cervical malignancies, high-risk HPV (HR-HPV) is the causative agent.
View Article and Find Full Text PDFCell Death Discov
January 2025
Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
Emerging evidence shows that lipid metabolic reprogramming plays a vital role in tumor metastasis. The effect and mechanism of fatty acids and lipid droplets (LDs), the core products of lipid metabolism, on the metastasis of oral squamous cell carcinoma (OSCC), need further exploration. In this study, the influence of palmitic acid (PA) and oleic acid (OA) on the migration and invasion ability of OSCC cells was determined by in vitro experiments.
View Article and Find Full Text PDFCell Signal
January 2025
State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-embryology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China. Electronic address:
Autophagy-mediated anoikis resistance plays a critical role in the initiation of tumor metastasis. Therefore, we investigated the role and mechanism of anoikis resistance mediated by free fatty acids (FFAs) derived from lipophagy in highly invasive clear cell renal cell carcinoma (ccRCC). Here, we found that the highly invasive ccRCC cell line Himi exhibited enhanced resistance to anoikis and elevated lipophagy levels.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Oral Anatomy and Physiology, Hospital of Stomatology, Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Jilin University, Changchun, 130021, China.
Novel strategies to disrupt tumor progression have emerged from studying the interactions between tumor cells and tumor-associated macrophages (TAMs). However, the molecular mechanisms of interactions between tumor cells and TAMs underlying oral squamous cell carcinoma (OSCC) progression have not been fully elucidated. This study explored the molecular mechanism of the HSP27/IL-6 axis in OSCC chemoresistance, invasion, and migration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!