Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition.

Blood

Cancer and Stem Cell Biology Signature Research Program, Duke-National University of Singapore Graduate Medical School, Singapore; Department of Haematology, Singapore General Hospital, Singapore; Department of Medical Oncology, National Cancer Centre, Singapore; and Department of Medicine, Duke University Medical Center, Durham, NC.

Published: May 2014

C-abl oncogene 1, nonreceptor tyrosine kinase (ABL1) kinase inhibitors such as imatinib mesylate (imatinib) are effective in managing chronic myeloid leukemia (CML) but incapable of eliminating leukemia stem cells (LSCs), suggesting that kinase-independent pathways support LSC survival. Given that the bone marrow (BM) hypoxic microenvironment supports hematopoietic stem cells, we investigated whether hypoxia similarly contributes to LSC persistence. Importantly, we found that although breakpoint cluster region (BCR)-ABL1 kinase remained effectively inhibited by imatinib under hypoxia, apoptosis became partially suppressed. Furthermore, hypoxia enhanced the clonogenicity of CML cells, as well as their efficiency in repopulating immunodeficient mice, both in the presence and absence of imatinib. Hypoxia-inducible factor 1 α (HIF1-α), which is the master regulator of the hypoxia transcriptional response, is expressed in the BM specimens of CML individuals. In vitro, HIF1-α is stabilized during hypoxia, and its expression and transcriptional activity can be partially attenuated by concurrent imatinib treatment. Expression analysis demonstrates at the whole-transcriptome level that hypoxia and imatinib regulate distinct subsets of genes. Functionally, knockdown of HIF1-α abolished the enhanced clonogenicity during hypoxia. Taken together, our results suggest that in the hypoxic microenvironment, HIF1-α signaling supports LSC persistence independent of BCR-ABL1 kinase activity. Thus, targeting HIF1-α and its pathway components may be therapeutically important for the complete eradication of LSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2013-07-511907DOI Listing

Publication Analysis

Top Keywords

stem cells
12
hypoxic microenvironment
8
lsc persistence
8
bcr-abl1 kinase
8
enhanced clonogenicity
8
hypoxia
7
imatinib
6
hif1-α
5
physiologic hypoxia
4
hypoxia promotes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!