AI Article Synopsis

  • A study tested an unplanted constructed wetland using Bauxsol™ pellets and soil to treat municipal wastewater over six months, finding that Bauxsol™ improved contaminant removal.
  • The treatment achieved over 95% phosphate removal and approximately 26% nitrogen removal, with distinct microbial communities developing on the Bauxsol™ pellets compared to the soil.
  • The research highlighted the presence of various nitrogen-transforming microbes on both media, supporting Bauxsol™ pellets as an effective alternative for enhancing wastewater treatment in constructed wetlands.

Article Abstract

Municipal wastewater was treated over a six month period in an unplanted constructed wetland with a lower soil layer and an upper Bauxsol™ pellet layer. The interactions between Bauxsol™ pellets, soil, effluent and microbial communities demonstrated a positive influence on contaminant removal. Bauxsol™ treated effluent showed >95% phosphate removal and ~26% nitrogen removal during the trial. Substantial quantities of nitrate, trace-metals and Colwell P were bound to the pellets, whereas only ammonium was bound to the soil. The structure of microbial communities analysed by denaturing gradient gel electrophoresis (DGGE) showed distinct bacterial communities attached to Bauxsol™ pellets and soil owing to differences in geochemistry and micro-environmental conditions. Polymerase chain reaction (PCR) amplification of specific marker genes (i.e. bacterial and archaeal amoA genes, nosZ gene, and hzo gene) was used to evaluate the presence of microbial communities associated with nitrogen transformation. Data revealed the co-existence of aerobic ammonia-oxidising bacteria, anaerobic ammonia-oxidising bacteria (anammox) and denitrifiers attached to Bauxsol™ pellets and ammonia-oxidising bacteria and archaea attached to soil. This study successfully demonstrates that Bauxsol™ pellets are a suited alternative media for constructed wetland to treat wastewater effectively removing phosphate and serving as biomass support particles for bacterial communities associated with nitrogen-cycling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2014.03.030DOI Listing

Publication Analysis

Top Keywords

bauxsol™ pellets
20
constructed wetland
12
microbial communities
12
ammonia-oxidising bacteria
12
unplanted constructed
8
treat wastewater
8
pellets soil
8
bacterial communities
8
attached bauxsol™
8
communities associated
8

Similar Publications

Background: Cocaine Use Disorder (CUD) remains a significant problem in the United States, with high rates of relapse and no present FDA-approved treatment. The acetylcholine neurotransmitter system, specifically through modulation of muscarinic acetylcholine receptor (mAChR) function, has shown promise as a therapeutic target for multiple aspects of CUD. Enhancement of the M mAChR subtype via positive allosteric modulation has been shown to inhibit the behavioral and neurochemical effects of cocaine across several rodent models of CUD.

View Article and Find Full Text PDF

Portal vein tumor thrombus (PVTT) is a poor prognostic factor for hepatocellular carcinoma (HCC) patients, highlighting the need for an oral drug delivery system that combines convenience, simplicity, biosafety, and improved patient compliance. Leveraging the unique anatomy of the portal vein and insights from single-cell RNA sequencing of the PVTT tumor microenvironment, we developed oral pellets using CaCO@PDA nanoparticles (NPs) encapsulating both doxorubicin hydrochloride and low molecular weight heparin. These NPs target the tumor thrombus microenvironment, aiming to break down the thrombus barrier and turn the challenge of portal vein blockage into an advantage by enhancing drug delivery efficiency through oral administration.

View Article and Find Full Text PDF

A review on hydroxyapatite fabrication: from powders to additive manufactured scaffolds.

Biomater Sci

January 2025

Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India.

Hydroxyapatite (HA), the main inorganic bone component, is the most widely researched bioceramic for bone repair. This paper presents a comprehensive review of recent advancements in HA synthesis methods and their integration into additive manufacturing (AM) processes. Synthesis methodologies discussed include wet, dry, and biomimetic routes, emphasizing their impact on tailoring the physicochemical properties of HA for biomedical applications.

View Article and Find Full Text PDF

Open frameworks in the NaMn(PO)F fluoro-pyrophosphates system.

Dalton Trans

January 2025

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China.

Three new sodium manganese fluoro-pyrophosphate compounds, namely, NaMn(PO)F (I), NaMn(PO)F (II), and NaMn(PO)F (III), have been synthesized by heating a mixture of NaPF, NaPOF or NaHPO with different Mn sources in NaNO and KNO fluxes. The structures of the title compounds were characterized single-crystal X-ray diffraction (XRD). II is characteristic of a shell of Na ions that encloses one [Mn(PO)F] unit, whereas I and III reveal three-dimensional (3D) frameworks that consist of MnO, Mn/NaOF octahedra or MnO octahedra and distorted MnO square pyramids with PO units, where Na cations reside in different-membered ring one-dimensional (1D) tunnels.

View Article and Find Full Text PDF

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!