A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pirin1 (PRN1) is a multifunctional protein that regulates quercetin, and impacts specific light and UV responses in the seed-to-seedling transition of Arabidopsis thaliana. | LitMetric

Pirins are cupin-fold proteins, implicated in apoptosis and cellular stress in eukaryotic organisms. Pirin1 (PRN1) plays a role in seed germination and transcription of a light- and ABA-regulated gene under specific conditions in the model plant system Arabidopsis thaliana. Herein, we describe that PRN1 possesses previously unreported functions that can profoundly affect early growth, development, and stress responses. In vitro-translated PRN1 possesses quercetinase activity. When PRN1 was incubated with G-protein-α subunit (GPA1) in the inactive conformation (GDP-bound), quercetinase activity was observed. Quercetinase activity was not observed when PRN1 was incubated with GPA1 in the active form (GTP-bound). Dark-grown prn1 mutant seedlings produced more quercetin after UV (317 nm) induction, compared to levels observed in wild type (WT) seedlings. prn1 mutant seedlings survived a dose of high-energy UV (254 nm) radiation that killed WT seedlings. prn1 mutant seedlings grown for 3 days in continuous white light display disoriented hypocotyl growth compared to WT, but hypocotyls of dark-grown prn1 seedlings appeared like WT. prn1 mutant seedlings transformed with GFP constructs containing the native PRN1 promoter and full ORF (PRN1::PRN1-GFP) were restored to WT responses, in that they did not survive UV (254 nm), and there was no significant hypocotyl disorientation in response to white light. prn1 mutants transformed with PRN1::PRN1-GFP were observed by confocal microscopy, where expression in the cotyledon epidermis was largely localized to the nucleus, adjacent to the nucleus, and diffuse and punctate expression occurred within some cells. WT seedlings transformed with the 35S::PRN1-GFP construct exhibited widespread expression in the epidermis of the cotyledon, also with localization in the nucleus. PRN1 may play a critical role in cellular quercetin levels and influence light- or hormonal-directed early development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976398PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093371PLOS

Publication Analysis

Top Keywords

prn1 mutant
16
mutant seedlings
16
prn1
13
quercetinase activity
12
pirin1 prn1
8
arabidopsis thaliana
8
prn1 possesses
8
prn1 incubated
8
activity observed
8
dark-grown prn1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!