Trabecular bone microfracture pathogenesis and associated healing processes are not well understood. We analyzed the microcalluses that form subsequent to microfractures in patients with osteoporosis (OP) using synchrotron radiation micro CT (SRCT). Subchondral bone columns were extracted from the femoral heads of 11 female patients with a femoral neck fracture. SRCT scanning was performed with 5.9×5.9×5.9 μm3 voxel size and the microcallus number was measured in a 5-mm cubic subchondral bone region. The trabecular bone microstructure was measured and its relationship to the microcallus number was analyzed. In addition, the degree of mineralization of the microcallus region and that of the rest of the trabecular bone were measured and compared. Microcallus formations were detected in all cases, with a mean microcallus number of 4.9 (range, 2-11). The microcallus number had a significantly negative correlation with bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and degree of mineralization, and had a positive correlation with specific bone surface (BS/BV). The degree of mineralization of the microcallus region was lower than that of the rest of the trabecular bone and had a wider range of values. Microcallus formations were frequently detected in patients with OP, and more prevalent in the bone with thinner trabeculae, suggesting microfractures might occur due to activities of daily living as the OP progresses. The degree of mineralization of microcallus might represent the process of bone healing from immature woven bone to mature trabecular bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2014.03.039 | DOI Listing |
J Orthop Surg Res
January 2025
Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.
View Article and Find Full Text PDFPLoS One
January 2025
Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China.
The cervical uncinate process is a unique structure of the cervical spine that undergoes significant changes in its morphological characteristics with age, and these changes may be related to osteoporosis. This study aimed to observe the distribution of cancellous bone in the cervical uncinate process and its morphological features using micro-computed tomography (Micro-CT) to gain a deeper understanding of the morphological characteristics of the uncinate microstructure. We performed Micro-CT scans on 31 sets of C3-C7 vertebrae, a total of 155 intact bone samples, and subsequently used the measurement software with the Micro-CT system to obtain parameters related to the cancellous bone of the uncinate process.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, Loma Linda, CA, USA.
This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.
View Article and Find Full Text PDFAging Dis
December 2024
Department of Biomechanics, Poznan University of Physical Education, Poznań, Poland.
This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Internal Medicine Division, Federal University of Parana (UFPR), Curitiba, PR, Brazil.
Patients with radiographic axial spondyloarthritis (r-axSpA) experience a higher prevalence of fragility fractures, though the pathophysiology of osteoporosis associated with this disease remains poorly understood. The objective of this study was to evaluate the histomorphometric data in r-axSpA patients. Male r-axSpA patients up to 55 years old were enrolled in this cross-sectional study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!