The bacterium Xanthomonas campestris pathovar musacearum (Xcm) is the causal agent of banana Xanthomonas wilt (BXW). This disease has devastated economies based on banana and plantain crops (Musa species) in East Africa. Here we use genome-wide sequencing to discover a set of single-nucleotide polymorphisms (SNPs) among East African isolates of Xcm. These SNPs have potential as molecular markers for phylogeographic studies of the epidemiology and spread of the pathogen. Our analysis reveals two major sub-lineages of the pathogen, suggesting that the current outbreaks of BXW on Musa species in the region may have more than one introductory event, perhaps from Ethiopia. Also, based on comparisons of genome-wide sequence data from multiple isolates of Xcm and multiple strains of X. vasicola pathovar vasculorum, we identify genes specific to Xcm that could be used to specifically detect Xcm by PCR-based methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902798PMC
http://dx.doi.org/10.3390/genes3030361DOI Listing

Publication Analysis

Top Keywords

genome-wide sequencing
8
reveals major
8
major sub-lineages
8
xanthomonas campestris
8
campestris pathovar
8
pathovar musacearum
8
musa species
8
isolates xcm
8
xcm
5
sequencing reveals
4

Similar Publications

Identification of G-quadruplex nucleic acid structures by high-throughput sequencing: A review.

Int J Biol Macromol

January 2025

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. These structures play pivotal roles in cellular processes, including DNA replication, transcription, RNA splicing, and protein translation. High-throughput sequencing has significantly advanced the study of G4s by enabling genome-wide mapping and detailed characterization.

View Article and Find Full Text PDF

Rare and common genetic variants underlying the risk of Hirschsprung's disease.

Hum Mol Genet

January 2025

Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Qiaokou District, Wuhan, Hubei 430030, China.

Hirschsprung's disease (HSCR) is a congenital enteric neuropathic disorder characterized by high heritability (>80%) and polygenic inheritance (>20 genes). The previous genome-wide association studies (GWAS) identified several common variants associated with HSCR and demonstrated increased predictive performance for HSCR risk in Europeans using a genetic risk score, there remains a notable gap in knowledge regarding Chinese populations. We conducted whole exome sequencing in a HSCR case cohort in Chinese.

View Article and Find Full Text PDF

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq).

View Article and Find Full Text PDF

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Cervical cancer is the fourth most common cancer among women globally, and studies have shown that genetic variants play a significant role in its development. A variety of germline and somatic mutations are associated with cervical cancer. However, genomic data derived from these mutations have not been extensively utilized for the development of repurposed drugs for cervical cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!