Borrelia burgdorferi sensu lato (B. burgdorferi s.l.), the group of bacterial species represented by Lyme disease pathogens, has one of the most complex and variable genomic architectures among prokaryotes. Showing frequent recombination within and limited gene flow among geographic populations, the B. burgdorferi s.l. genomes provide an excellent window into the processes of bacterial evolution at both within- and between-population levels. Comparative analyses of B. burgdorferi s.l. genomes revealed a highly dynamic plasmid composition but a conservative gene repertoire. Gene duplication and loss as well as sequence variations at loci encoding surface-localized lipoproteins (e.g., the PF54 genes) are strongly associated with adaptive differences between species. There are a great many conserved intergenic spacer sequences that are candidates for cis-regulatory elements and non-coding RNAs. Recombination among coexisting strains occurs at a rate approximately three times the mutation rate. The coexistence of a large number of genomic groups within local B. burgdorferi s.l. populations may be driven by immune-mediated diversifying selection targeting major antigen loci as well as by adaptation to multiple host species. Questions remain regarding the ecological causes (e.g., climate change, host movements, or new adaptations) of the ongoing range expansion of B. burgdorferi s.l. and on the genomic variations associated with its ecological and clinical variability. Anticipating an explosive growth of the number of B. burgdorferi s.l. genomes sampled from both within and among species, we propose genome-based methods to test adaptive mechanisms and to identify molecular bases of phenotypic variations. Genome sequencing is also necessary for monitoring a likely increase of genetic admixture of previously isolated species and populations in North America and elsewhere.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4299872 | PMC |
http://dx.doi.org/10.1016/j.meegid.2014.03.025 | DOI Listing |
mBio
December 2024
School of Medicine, Department of Pathology, Uniformed Services University of the Health Sciences (USUHS), Bethesda, Maryland, USA.
The bacterium responsible for Lyme disease, , accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B31 cells are radiosensitive, with a gamma-radiation survival limit for 10 wild-type cells of <1 kGy. Thus, we explored radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn present as antioxidant Mn metabolite complexes (H-Mn).
View Article and Find Full Text PDFCell Rep Methods
December 2024
German National Reference Centre for Borrelia, Oberschleissheim, Germany; Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.
Multi-locus sequence typing (MLST) based on eight genes has become the method of choice for Borrelia typing and is extensively used for population studies. Whole-genome sequencing enables studies to scale up to genomic levels but necessitates extended schemes. We have developed a 639-loci core genome MLST (cgMLST) scheme for Borrelia burgdorferi sensu lato (s.
View Article and Find Full Text PDFSci Data
December 2024
Institute for Systems Biology, Seattle, Washington, USA.
Lyme disease is caused by an infection with the spirochete Borrelia burgdorferi, and is the most common vector-borne disease in North America. B. burgdorferi isolates harbor extensive genomic and proteomic variability and further comparison of isolates is key to understanding the infectivity of the spirochetes and biological impacts of identified sequence variants.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biology, Stanford University, Stanford, CA 94305, USA.
Infect Immun
December 2024
Texas A&M Preclinical Phenotyping Core, Texas A&M Institute for Genome Science and Society, Texas A&M University, College Station, Texas, USA.
As white-footed mice, , are considered the primary animal reservoir of (), the main agent of Lyme disease (LD) in the United States, these animals represent the most relevant model to study borrelial spirochetes in the context of their natural life cycle. Previous studies have consistently demonstrated that although white-footed mice respond immunologically to the invasion of the Lyme pathogen, adults do not develop a clinically detectable disease. This tolerance, which is common for mammalian reservoirs of different pathogens, contrasts with detrimental anti-borrelial responses of C3H mice, a widely used animal model of LD, which always result in a clinical manifestation (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!