Background: Hepatitis B virus (HBV) is an important blood-borne pathogen that causes hepatic inflammation and can lead to liver cirrhosis and hepatocellular carcinoma. Conventional methods of HBV detection are time consuming and require highly trained personnel and elaborate equipment. This report describes the development of a rapid, simple, specific, and sensitive loop-mediated isothermal amplification assay (LAMP) for detection of HBV genotypes A, B, C, D, E, and F in blood samples.
Methods: HBV standard plasma panels and clinical donor plasma specimens were used for the development and validation of the LAMP assay. Amplification was performed at 60°C for 60 minutes using extracted DNA or heat-treated plasma specimens without DNA extraction. The assay was evaluated for its ability to detect various HBV genotypes and for its sensitivity, specificity, and time-point of detection.
Results: The LAMP assay detected HBV genotypes A-F and demonstrated a sensitivity of 10-100 IU per reaction of HBV DNA. The assay also detected 69 of 75 (92%) HBV-positive donor plasma specimens tested and demonstrated a specificity of 100%.
Conclusions: These results demonstrate that our HBV-LAMP assay is rapid, sensitive and specific, and capable of detecting the major HBV genotypes. This assay could be used in clinical point-of-care settings, mainly in endemic and resource-limited environments for HBV diagnostics, donor screening, epidemiological studies, and therapeutic monitoring of patients undergoing antiviral treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305128 | PMC |
http://dx.doi.org/10.1093/cid/ciu210 | DOI Listing |
J Clin Virol
January 2025
Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:
Background: Next-generation sequencing (NGS) for Hepatitis B virus (HBV) antiviral resistance (AVR) testing is a highly sensitive diagnostic method, able to detect low-level mutant subpopulations. Our clinical virology laboratory previously transitioned from DNA hybridization (INNO-LiPA) to NGS, initially with the GS Junior System and subsequently the MiSeq. The Oxford Nanopore Technology (ONT) sequencing system was evaluated for HBV resistance testing, with regards to sequencing accuracy and turn-around time.
View Article and Find Full Text PDFEuroasian J Hepatogastroenterol
December 2024
Department of Microbiology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
Introduction: One of the main causes of primary hepatocellular carcinoma and chronic hepatitis is the hepatitis C virus (HCV), with significant variability in its genotypes affecting pathogenicity and treatment outcomes. In India, prevalence ranges from 0.5 to 1.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Université Joseph KI-ZERBO, Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), 03 BP 7021 Ouagadougou 03, Burkina Faso.
Int J Mol Sci
December 2024
Department of Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Republic of Korea.
This study utilized a genome-wide association study (GWAS) to investigate the genetic variations linked to the risk of hepatitis B virus (HBV) reactivation in patients who have undergone liver transplantation (LT), aiming to enhance understanding and improve clinical outcomes. Genotyping performed on a selected patients from the Korean Organ Transplantation Registry (KOTRY) data using high-throughput platforms with the Axiom Korea Biobank array 1.1.
View Article and Find Full Text PDFAntiviral Res
January 2025
Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. Electronic address:
Background: Recent evidence has indicated that the O-glycosylated PreS2 domain of the middle HBsAg is a distinguishing characteristic that allows the identification of HBsAg of HBV Dane particles and SVPs. This study's objective was to assess the changes in serum O-glycosylated HBsAg levels in CHB patients undergoing ETV or Peg-IFNα treatment.
Methods: Our retrospective study enrolled 86 patients with genotype C CHB.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!