Rapid detection of hepatitis B virus in blood plasma by a specific and sensitive loop-mediated isothermal amplification assay.

Clin Infect Dis

Laboratory of Emerging Pathogens, Office of Blood Research and Review, Division of Emerging and Transfusion-Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland.

Published: July 2014

Background: Hepatitis B virus (HBV) is an important blood-borne pathogen that causes hepatic inflammation and can lead to liver cirrhosis and hepatocellular carcinoma. Conventional methods of HBV detection are time consuming and require highly trained personnel and elaborate equipment. This report describes the development of a rapid, simple, specific, and sensitive loop-mediated isothermal amplification assay (LAMP) for detection of HBV genotypes A, B, C, D, E, and F in blood samples.

Methods: HBV standard plasma panels and clinical donor plasma specimens were used for the development and validation of the LAMP assay. Amplification was performed at 60°C for 60 minutes using extracted DNA or heat-treated plasma specimens without DNA extraction. The assay was evaluated for its ability to detect various HBV genotypes and for its sensitivity, specificity, and time-point of detection.

Results: The LAMP assay detected HBV genotypes A-F and demonstrated a sensitivity of 10-100 IU per reaction of HBV DNA. The assay also detected 69 of 75 (92%) HBV-positive donor plasma specimens tested and demonstrated a specificity of 100%.

Conclusions: These results demonstrate that our HBV-LAMP assay is rapid, sensitive and specific, and capable of detecting the major HBV genotypes. This assay could be used in clinical point-of-care settings, mainly in endemic and resource-limited environments for HBV diagnostics, donor screening, epidemiological studies, and therapeutic monitoring of patients undergoing antiviral treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4305128PMC
http://dx.doi.org/10.1093/cid/ciu210DOI Listing

Publication Analysis

Top Keywords

hbv genotypes
16
plasma specimens
12
hbv
9
hepatitis virus
8
specific sensitive
8
sensitive loop-mediated
8
loop-mediated isothermal
8
isothermal amplification
8
assay
8
amplification assay
8

Similar Publications

Evaluation of a next generation sequencing assay for Hepatitis B antiviral drug resistance on the oxford nanopore system.

J Clin Virol

January 2025

Division of Medical Microbiology and Virology, St. Paul's Hospital, Providence Health Care, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada. Electronic address:

Background: Next-generation sequencing (NGS) for Hepatitis B virus (HBV) antiviral resistance (AVR) testing is a highly sensitive diagnostic method, able to detect low-level mutant subpopulations. Our clinical virology laboratory previously transitioned from DNA hybridization (INNO-LiPA) to NGS, initially with the GS Junior System and subsequently the MiSeq. The Oxford Nanopore Technology (ONT) sequencing system was evaluated for HBV resistance testing, with regards to sequencing accuracy and turn-around time.

View Article and Find Full Text PDF

Introduction: One of the main causes of primary hepatocellular carcinoma and chronic hepatitis is the hepatitis C virus (HCV), with significant variability in its genotypes affecting pathogenicity and treatment outcomes. In India, prevalence ranges from 0.5 to 1.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatitis B virus (HBV) is a major global health concern linked to liver disease and cancer, with research focusing on genetic factors that affect its evolution.
  • Recent studies highlighted the ECM1 gene, specifically two polymorphisms (rs3834087 and rs3754217), which may influence HBV pathogenesis, particularly in an African cohort analyzed in this research.
  • The study found that the heterozygous genotype of rs3754217 appears to protect against chronic hepatitis, suggesting that certain genetic variations may impact the severity of the disease in infected individuals.
View Article and Find Full Text PDF

This study utilized a genome-wide association study (GWAS) to investigate the genetic variations linked to the risk of hepatitis B virus (HBV) reactivation in patients who have undergone liver transplantation (LT), aiming to enhance understanding and improve clinical outcomes. Genotyping performed on a selected patients from the Korean Organ Transplantation Registry (KOTRY) data using high-throughput platforms with the Axiom Korea Biobank array 1.1.

View Article and Find Full Text PDF

Serum O-glycosylated HBsAg levels correlate with HBV RNA in HBeAg positive CHB patients during antiviral therapy.

Antiviral Res

January 2025

Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. Electronic address:

Background: Recent evidence has indicated that the O-glycosylated PreS2 domain of the middle HBsAg is a distinguishing characteristic that allows the identification of HBsAg of HBV Dane particles and SVPs. This study's objective was to assess the changes in serum O-glycosylated HBsAg levels in CHB patients undergoing ETV or Peg-IFNα treatment.

Methods: Our retrospective study enrolled 86 patients with genotype C CHB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!