Background & Aims: SMAD4 frequently is lost from colorectal cancers (CRCs), which is associated with the development of metastases and a poor prognosis. SMAD4 loss is believed to alter transforming growth factor β signaling to promote tumor progression. However, SMAD4 is also a central component of the bone morphogenetic protein (BMP) signaling pathway, implicated in CRC pathogenesis by human genetic studies. We investigated the effects of alterations in BMP signaling on the invasive and metastatic abilities of CRC cells and changes in members in this pathway in human tumor samples.

Methods: We activated BMP signaling in SMAD4-positive and SMAD4-negative CRC cells (HCT116, HT-29, SW480, and LS174T); SMAD4 was stably expressed or knocked down using lentiviral vectors. We investigated the effects on markers of epithelial-mesenchymal transition and on cell migration, invasion, and formation of invadopodia. We performed kinase activity assays to characterize SMAD4-independent BMP signaling and used an inhibitor screen to identify pathways that regulate CRC cell migration. We investigated the effects of the ROCK inhibitor Y-27632 in immunocompromised (CD-1 Nu) mice with orthotopic metastatic tumors. Immunohistochemistry was used to detect BMPR1a, BMPR1b, BMPR2, and SMAD4 in human colorectal tumors; these were related to patient survival times.

Results: Activation of BMP signaling in SMAD4-negative cells altered protein and messenger RNA levels of markers of epithelial-mesenchymal transition and increased cell migration, invasion, and formation of invadopodia. Knockdown of the BMP receptor in SMAD4-negative cells reduced their invasive activity in vitro. SMAD4-independent BMP signaling activated Rho signaling via ROCK and LIM domain kinase (LIMK). Pharmacologic inhibition of ROCK reduced metastasis of colorectal xenograft tumors in mice. Loss of SMAD4 from colorectal tumors has been associated with reduced survival time; we found that this association is dependent on the expression of BMP receptors but not transforming growth factor β receptors.

Conclusions: Loss of SMAD4 from colorectal cancer cells causes BMP signaling to switch from tumor suppressive to metastasis promoting. Concurrent loss of SMAD4 and normal expression of BMP receptors in colorectal tumors was associated with reduced survival times of patients. Reagents that interfere with SMAD4-independent BMP signaling, such as ROCK inhibitors, might be developed as therapeutics for CRC.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2014.03.052DOI Listing

Publication Analysis

Top Keywords

bmp signaling
36
loss smad4
16
bmp
12
investigated effects
12
cell migration
12
smad4-independent bmp
12
colorectal tumors
12
signaling
11
signaling promote
8
colorectal cancer
8

Similar Publications

Primitive to visceral endoderm maturation is essential for mouse epiblast survival beyond implantation.

iScience

January 2025

Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.

The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.

View Article and Find Full Text PDF

Research on bone substitutes for repairing bone defects has drawn increasing attention, and the efficacy of three-dimensional (3D) printed bioactive porous scaffolds for bone defect repair has been well documented. Our previous studies have shown that psoralen can promote osteogenesis by activating the Wnt/β-catenin and BMP/Smad signaling pathways and their crosstalk effects, and psoralen nanospheres have a good osteogenesis-promoting effect with low cytotoxicity. The Chinese medicine oyster shell powder, characterized by its porous structure, strong adsorption, and unique bioactivity, has potential in fracture-promoting repair materials.

View Article and Find Full Text PDF

Identification and regulation of a novel leptin receptor-linked enhancer during zebrafish ventricle regeneration.

Life Sci

January 2025

TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China. Electronic address:

Aims: Vertebrates vary greatly in their abilities to regenerate injured hearts. Zebrafish possess a remarkable capacity for cardiac regeneration, making them an excellent model for regeneration research. Recent studies have reported the activation and underlying regulatory mechanisms of leptin b (lepb) and the leptin b-linked enhancer (LEN) in injured hearts.

View Article and Find Full Text PDF

Phlorofucofuroeckol-A: A Natural Compound with Potential to Attenuate Inflammatory Diseases Caused by Airborne Fine Dust.

Medicina (Kaunas)

January 2025

Laboratory for Infection Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea.

: Persistent exposure to airborne fine dust (FD) particles contributing to air pollution has been linked to various human health issues, including respiratory inflammation, allergies, and skin diseases. We aimed to identify potential seaweed anti-inflammatory bioactive reagents and determine their effects on systemic inflammatory responses induced by FD particles. : While exploring anti-inflammatory bioactive reagents, we purified compounds with potential anti-inflammatory effects from the seaweed extracts of , , and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!