Meglitinides (nateglinide and repaglinide) are widely used oral drugs for the treatment of type II diabetes mellitus. In the present study, the effects of meglinitides administered supraspinally on kainic acid (KA)-induced hippocampal neuronal cell death and hyperglycemia were studied in ICR mice. Mice were pretreated intracerebroventricularly (i.c.v.) with 30 μg of nateglinide and repaglinide for 10 min and then, mice were administered i.c.v. with KA (0.1 μg). The neuronal cell death in the CA3 region in the hippocampus was assessed 24h after KA administration and the blood glucose level was measured 30, 60, and 120 min after KA administration. We found that i.c.v. pretreatment with repaglinide attenuated the KA-induced neuronal cell death in CA3 region of the hippocampus and hyperglycemia. However, nateglinide pretreated i.c.v. did not affect the KA-induced neuronal cell death and hyperglycemia. In addition, KA administered i.c.v. caused an elevation of plasma corticosterone level and a reduction of the plasma insulin level. Furthermore, i.c.v. pretreatment with repaglinide attenuated KA-induced up-regulation of plasma corticosterone level. Furthermore, i.c.v. administration of repaglinide alone increased plasma insulin level and repaglinide pretreated i.c.v. caused a reversal of KA-induced hypoinsulinemic effect. Our results suggest that supraspinally administered repaglinide, but not nateglinide, exerts a protective effect against the KA-induced neuronal cells death in CA3 region of the hippocampus. The neuroprotective effect of repaglinide appears to be mediated by lowering the blood glucose level induced by KA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainresbull.2014.02.003 | DOI Listing |
Annu Rev Biomed Eng
January 2025
2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; email:
Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood.
View Article and Find Full Text PDFMol Pharm
January 2025
School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia.
Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
The dysfunction of stress granules (SGs) plays a crucial role in the pathogenesis of various neurological disorders, with T cell intracellular antigen 1 (TIA1) being a key component of SGs. However, the role and mechanism of TIA1-mediated SGs in experimental autoimmune encephalomyelitis (EAE) remain unclear. In this study, upregulation of TIA1, its translocation from the nucleus to the cytoplasm, and co-localization with G3BP1 (a marker of SGs) are observed in the spinal cord neurons of EAE mice.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266003/572024, China.
The scarcity of effective neuroprotective agents and the presence of blood-brain barrier (BBB)-mediated extremely inefficient intracerebral drug delivery are predominant obstacles to the treatment of cerebral ischemic stroke (CIS). Herein, ROS-responsive borneol-based amphiphilic polymeric NPs are constructed by using traditional Chinese medicine borneol as functional blocks that served as surface brain-targeting ligand, inner hydrophobic core for efficient drug loading of membrane-permeable calcium chelator BAPTA-AM, and neuroprotective structural component. In MCAO mice, the nanoformulation (polymer: 3.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!