Altered acetylcholine release in the hippocampus of dystrophin-deficient mice.

Neuroscience

Department of Pharmacology, Section of Natural Products, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil. Electronic address:

Published: June 2014

Mild cognitive impairments have been described in one-third of patients with Duchenne muscle dystrophy (DMD). DMD is characterized by progressive and irreversible muscle degeneration caused by mutations in the dystrophin gene and lack of the protein expression. Previously, we have reported altered concentrations of α7- and β2-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal membranes of dystrophic (mdx) mice. This suggests that alterations in the central cholinergic synapses are associated with dystrophin deficiency. In this study, we examined the release of acetylcholine (ACh) and the level of the vesicular ACh transporter (VAChT) using synaptosomes isolated from brain regions that normally have a high density of dystrophin (cortex, hippocampus and cerebellum), in control and mdx mice at 4 and 12months of age. ACh release evoked by nicotinic stimulation or K(+) depolarization was measured as the tritium outflow from superfused synaptosomes preloaded with [(3)H]-choline. The results showed that the evoked tritium release was Ca(2+)-dependent and mostly formed by [(3)H]-ACh. β2-containing nAChRs were involved in agonist-evoked [(3)H]-ACh release in control and mdx preparations. In hippocampal synaptosomes from 12-month-old mdx mice, nAChR-evoked [(3)H]-ACh release increased by 57% compared to age-matched controls. Moreover, there was a 98% increase in [(3)H]-ACh release compared to 4-month-old mdx mice. [(3)H]-ACh release evoked by K(+) depolarization was not altered, while the VAChT protein level was decreased (19%) compared to that of age-matched controls. In cortical and cerebellar preparations, there was no difference in nAChR-evoked [(3)H]-ACh release and VAChT levels between mdx and age-matched control groups. Our previous findings and the presynaptic alterations observed in the hippocampi of 12-month-old mdx mice indicate possible dysfunction of nicotinic cholinergic synapses associated with dystrophin deficiency. These changes may contribute to the cognitive and behavioral abnormalities described in dystrophic mice and patients with DMD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2014.03.050DOI Listing

Publication Analysis

Top Keywords

mdx mice
20
[3h]-ach release
20
release
9
cholinergic synapses
8
synapses associated
8
associated dystrophin
8
dystrophin deficiency
8
control mdx
8
release evoked
8
12-month-old mdx
8

Similar Publications

CTLA4-Ig reduces muscle fiber damage in a model of Duchenne muscular dystrophy by attenuating pro-inflammatory gene expression in myeloid lineage cells.

Am J Pathol

January 2025

Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-1606; Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA 90095-1606; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095. Electronic address:

Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a CTLA4-Ig fusion protein that blocks costimulatory signals required for activation of T-cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T-cells, macrophages and antigen presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.

View Article and Find Full Text PDF

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!