A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two mitochondrial genomes from the families Bethylidae and Mutillidae: independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera. | LitMetric

Two mitochondrial genomes from the families Bethylidae and Mutillidae: independent rearrangement of protein-coding genes and higher-level phylogeny of the Hymenoptera.

Mol Phylogenet Evol

State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: August 2014

In animal mitochondrial genomes, gene arrangements are usually conserved across major lineages but might be rearranged within derived groups, and might provide valuable phylogenetic characters. Here, we sequenced the mitochondrial genomes of Cephalonomia gallicola (Chrysidoidea: Bethylidae) and Wallacidia oculata (Vespoidea: Mutillidae). In Cephalonomia at least 11 tRNA and 2 protein-coding genes were rearranged, which is the first report of protein-coding gene rearrangements in the Aculeata. In the Hymenoptera, three types of protein-coding gene rearrangement events occur, i.e. reversal, transposition and reverse transposition. Venturia (Ichneumonidae) had the greatest number of common intervals with the ancestral gene arrangement pattern, whereas Philotrypesis (Agaonidae) had the fewest. The most similar rearrangement patterns are shared between Nasonia (Pteromalidae) and Philotrypesis, whereas the most differentiated rearrangements occur between Cotesia (Braconidae) and Philotrypesis. It is clear that protein-coding gene rearrangements in the Hymenoptera are evolutionarily independent across the major lineages but are conserved within groups such as the Chalcidoidea. Phylogenetic analyses supported the sister-group relationship of Orrussoidea and Apocrita, Ichneumonoidea and Aculeata, Vespidae and Apoidea, and the paraphyly of Vespoidea. The Evaniomorpha and phylogenetic relationships within Aculeata remain controversial, with discrepancy between analyses using protein-coding and RNA genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2014.03.023DOI Listing

Publication Analysis

Top Keywords

mitochondrial genomes
12
protein-coding gene
12
protein-coding genes
8
major lineages
8
gene rearrangements
8
protein-coding
6
gene
5
genomes families
4
families bethylidae
4
bethylidae mutillidae
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!