The histone-fold protein CHRAC14 influences chromatin composition in response to DNA damage.

Cell Rep

Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance and CellNetworks Excellence Cluster, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany. Electronic address:

Published: April 2014

Chromatin reorganization and the incorporation of specific histone modifications during DNA damage response are essential steps for the successful repair of any DNA lesion. Here, we show that the histone-fold protein CHRAC14 plays an essential role in response to DNA damage in Drosophila. Chrac14 mutants are hypersensitive to genotoxic stress and do not activate the G2/M cell-cycle checkpoint after damage induction. Even though the DNA damage repair process is activated in the absence of CHRAC14, lesions are not repaired efficiently. In the absence of CHRAC14, the centromere-specific histone H3 variant CENP-A localizes to sites of DNA damage, causing ectopic kinetochore formation and genome instability. CENP-A and CHRAC14 are able to interact upon damage. Our data suggest that CHRAC14 modulates chromatin composition in response to DNA damage, which is required for efficient DNA damage repair in Drosophila.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2014.03.008DOI Listing

Publication Analysis

Top Keywords

dna damage
28
response dna
12
damage
9
histone-fold protein
8
protein chrac14
8
chromatin composition
8
composition response
8
dna
8
damage repair
8
absence chrac14
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!