Sulfite oxidase is a mitochondria-located molybdenum-containing enzyme catalyzing the oxidation of sulfite to sulfate in the amino acid and lipid metabolism. Therefore, it plays a major role in detoxification processes, where defects in the enzyme cause a severe infant disease leading to early death with no efficient or cost-effective therapy in sight. Here we report that molybdenum trioxide (MoO3) nanoparticles display an intrinsic biomimetic sulfite oxidase activity under physiological conditions, and, functionalized with a customized bifunctional ligand containing dopamine as anchor group and triphenylphosphonium ion as targeting agent, they selectively target the mitochondria while being highly dispersible in aqueous solutions. Chemically induced sulfite oxidase knockdown cells treated with MoO3 nanoparticles recovered their sulfite oxidase activity in vitro, which makes MoO3 nanoparticles a potential therapeutic for sulfite oxidase deficiency and opens new avenues for cost-effective therapies for gene-induced deficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn501235jDOI Listing

Publication Analysis

Top Keywords

sulfite oxidase
24
oxidase activity
12
moo3 nanoparticles
12
molybdenum trioxide
8
sulfite
7
oxidase
6
nanoparticles
4
trioxide nanoparticles
4
nanoparticles intrinsic
4
intrinsic sulfite
4

Similar Publications

S-Sulfocysteine (SSC) is a metabolite derived from the metabolism of sulfur-containing amino acids. It has been implicated in neurotoxicity observed in children with sulfite oxidase deficiency. The aim of our study was to confirm the neurotoxic effects of SSC using a mouse hippocampal cell line (HT-22) and to investigate the role of apoptosis in these effects, especially in terms of caspase-3 activation and genotoxicity.

View Article and Find Full Text PDF

Essential role of sulfide oxidation in brain health and neurological disorders.

Pharmacol Ther

February 2025

Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA. Electronic address:

Hydrogen sulfide (HS) is an environmental hazard well known for its neurotoxicity. In mammalian cells, HS is predominantly generated by transsulfuration pathway enzymes. In addition, HS produced by gut microbiome significantly contributes to the total sulfide burden in the body.

View Article and Find Full Text PDF

Increased ROS levels, antioxidant defense disturbances and bioenergetic disruption induced by thiosulfate administration in the brain of neonatal rats.

Metab Brain Dis

December 2024

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, 90035-003, RS, Brazil.

Sulfite oxidase deficiencies, either caused by deficiency of the apoenzyme or the molybdenum cofactor, and ethylmalonic encephalopathy are inherited disorders that impact sulfur metabolism. These patients present with severe neurodeterioration accompanied by cerebral cortex and cerebellum abnormalities, and high thiosulfate levels in plasma and tissues, including the brain. We aimed to clarify the mechanisms of such abnormalities, so we assessed the ex vivo effects of thiosulfate administration on energetic status and oxidative stress markers in cortical and cerebellar tissues of newborn rats.

View Article and Find Full Text PDF

A Novel Variant in the Gene in the Oldest Individual with Late-Onset Isolated Sulfite Oxidase Deficiency.

Can J Neurol Sci

December 2024

Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.

View Article and Find Full Text PDF

Purpose: Molybdenum cofactor deficiency (MoCD) classically presents shortly after birth, with neurological symptoms ascribed to postnatal toxicity of accumulating sulphite. Case reports suggest that cerebral damage associated with MoCD may have a prenatal onset.

Methods: A meta-analysis of case reports was performed on individuals with genetically proven MoCD retrieved through a systematic review and in-house search.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!