The initial stages of the evolution of an open quantum system encode the key information of its underlying dynamical correlations, which in turn can predict the trajectory at later stages. We propose a general approach based on non-Markovian dynamical maps to extract this information from the initial trajectories and compress it into non-Markovian transfer tensors. Assuming time-translational invariance, the tensors can be used to accurately and efficiently propagate the state of the system to arbitrarily long time scales. The non-Markovian transfer tensor method (TTM) demonstrates the coherent-to-incoherent transition as a function of the strength of quantum dissipation and predicts the noncanonical equilibrium distribution due to the system-bath entanglement. TTM is equivalent to solving the Nakajima-Zwanzig equation and, therefore, can be used to reconstruct the dynamical operators (the system Hamiltonian and memory kernel) from quantum trajectories obtained in simulations or experiments. The concept underlying the approach can be generalized to physical observables with the goal of learning and manipulating the trajectories of an open quantum system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.110401 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry, College of Science, University of Nevada, Reno, Nevada 89557, United States.
We discuss the goals and the need for quantum information science (QIS) in chemistry. It is important to identify concretely how QIS matters to chemistry, and we articulate some of the most pressing and interesting research questions at the interface between chemistry and QIS, that is, "chemistry-centric" research questions relevant to QIS. We propose in what ways and in what new directions the field should innovate, in particular where a chemical perspective is essential.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Uppsala University, Department of Physics and Astronomy, Box 516, SE-751 20 Uppsala, Sweden.
The Landau-Lifshitz-Gilbert (LLG) and Landau-Lifshitz (LL) equations play an essential role for describing the dynamics of magnetization in solids. While a quantum analog of the LL dynamics has been proposed in [Phys. Rev.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
The Australian National University, Department of Quantum Science and Technology, Canberra, Australian Capital Territory 2601, Australia.
We demonstrate an atom interferometer measurement protocol compatible with operation on a dynamic platform. Our method employs two open interferometers, derived from the same atomic source, with different interrogation times to eliminate initial velocity dependence while retaining precision, accuracy, and long term stability. We validate the protocol by measuring gravitational tides, achieving a precision of 4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics and Astronomy & Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States.
Wide band gap FACsPb(IBr) perovskite photovoltaic (PV) devices are measured by spectroscopic ellipsometry in the through-the-glass configuration and analyzed to determine the complex optical property spectra of the perovskite absorber as well as the structural properties of all constituent layers. This information is used to simulate external quantum efficiency (EQE) spectra, to calculate PV device performance parameters such as short circuit current density, open circuit voltage, fill factor, and power conversion efficiency, and to develop strategies for increasing the accuracy of predictions. Simulations and calculations tend to overestimate PV device performance parameters, undermining the accuracy and usefulness of those simulations.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
LPHE-MS, Faculty of Science, Mohammed V University in Rabat, Morocco.
This study explores the optoelectronic and photovoltaic potential of acceptor-π-donor (A-π-D) architectures utilizing CSi quantum dots (CSiQDs) through a combination of density functional theory (DFT) and time-dependent DFT (TDDFT). We examined two key structural configurations: C-C and Si-C conformers. In these systems, CSiQDs serve as the acceptor, CHSF as the π-bridge, and 3 × (CHO) as the donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!