AI Article Synopsis

Article Abstract

What Is Known And Objective: Hydralazine is an inhibitor of DNA methyltransferases, whereas valproate interferes with histone deacetylation. In combination, they show a marked synergism in reducing tumour growth as well as development of metastasis and inducing cell differentiation. Hydralazine is metabolized by the highly polymorphic N-acetyltransferase 2. The current pilot study was performed to analyse the pharmacokinetic parameters of a single dose of hydralazine in 24 h (one tablet with 83 mg for slow acetylators and one tablet with 182 mg for fast acetylators) and three fixed doses of valproate (one tablet of controlled liberation with 700 mg every 8 h) in healthy genetically selected volunteers. Selection was performed based on their NAT2 activity as deduced from their genotype.

Methods: An open label non-randomized single arm study was conducted in two groups of six healthy volunteers of both genders aged 20-45 years with a body mass index 22·2-26·9 which were classified as fast or slow acetylators after genotyping 3 SNPs that cover 99·9% of the NAT2 variants in the Mexican population. Blood samples were collected predose and serially post-dose in an interval of 48 h. Hydralazine and valproate concentrations were determined by ultra-high performance liquid chromatography (UPLC) coupled to tandem mass spectroscopy (MS/MS).

Results And Discussion: The AUC0-48 h and Cmax of hydralazine were almost identical (1410 ± 560 vs. 1446 ± 509 ng h/mL and 93·4 ± 16·7 vs. 112·5 ± 42·1 ng/mL) in both groups with NAT2 genotype-adjusted doses, whereas the multidose parameters of valproate were not significantly affected neither by the selection of the NAT2 genotype (AUC0-48 h 2064 ± 455 vs. 1896 ± 185 μg h/mL; Cmax 96·4 ± 21·1 vs. 88·8 ± 7·2 μg/mL, for the fast and slow acetylators, respectively) nor the co-administration of 83 or 182 mg of hydralazine.

What Is New And Conclusion: Comparable hydralazine exposures (differences in AUC0-inf of only 7%) were observed in this study with genetic selection of volunteers and concomitant dose adjustment. However, the conclusions have yet to be confirmed with a full-powered 2 × 2 crossover study.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcpt.12155DOI Listing

Publication Analysis

Top Keywords

slow acetylators
12
genetic selection
8
selection volunteers
8
volunteers concomitant
8
concomitant dose
8
dose adjustment
8
fast slow
8
hydralazine
6
volunteers
4
adjustment leads
4

Similar Publications

Phenytoin is one of the most used antiepileptic drugs. Isoniazid, a first-line antitubercular drug, blocks the CYP2C19 enzyme, preventing phenytoin from being metabolised. Concomitant use of phenytoin and isoniazid predisposes to phenytoin toxicity.

View Article and Find Full Text PDF

Background: Under standard therapies, the incidence of drug-induced liver injury (DILI) in patients with tuberculosis ranges from 2% to 28%. Numerous studies have identified the risk factors for antituberculosis DILI; however, none have been conducted in a multiethnic real-world setting. The primary outcome of the current study was to identify the risk factors that could be used as the best predictors of DILI in a multiethnic cohort.

View Article and Find Full Text PDF

The N-acetyltransferase 2 (NAT2) gene exhibits substantial genetic diversity, leading to distinct acetylator phenotypes among individuals. In this study, we determine NAT2 gene polymorphisms in tuberculosis (TB) patients and analyze serum isoniazid (INH) concentrations across the various genotypes. An observational prospective cohort study involving 217 patients with pulmonary or extrapulmonary TB was carried out.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis (TB) patients on treatment can experience serious side effects like liver damage, linked to genetic variations in the NAT2 gene, which affect drug metabolism.
  • This study conducted a meta-analysis of 24 articles to assess the relationship between NAT2 genetic variants and the risk of drug-related liver toxicity in TB treatment.
  • Results indicated that individuals with a slow NAT2 acetylator genotype had over twice the risk of hepatotoxicity compared to others, highlighting the importance of pharmacogenomic testing for personalized treatment.
View Article and Find Full Text PDF

Variants in the -acetyltranferase 2 gene, acetylator phenotypes and their association with tuberculosis: Findings in Peruvian patients.

J Clin Tuberc Other Mycobact Dis

December 2024

Centro de Investigación de Genética y Biología Molecular, Facultad de Medicina Humana, Universidad de San Martín de Porres, Lima, Peru.

Background: Tuberculosis (TB) is a highly prevalent chronic infectious disease in developing countries, with Peru being one of the most affected countries in the world. The variants of the -acetyltransferase 2 () gene are related to xenobiotic metabolism and have potential usefulness in TB studies.

Aim: To determine whether gene variants and acetylator phenotypes are associated with active TB in Peruvian patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!