Development and discrimination of 12 double ditelosomics in tetraploid wheat cultivar DR147.

Genome

a State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Published: February 2014

As an important group in Triticum, tetraploid wheat plays a significant role in the research of wheat evolution. Several complete aneuploid sets of common wheat have provided valuable tools for genetic and breeding studies, while similar aneuploids of tetraploid wheat are still not well developed. Here, 12 double ditelosomics developed in Triticum turgidum L. var. durum cultivar DR147 (excluding dDT2B and dDT3A) were reported. Hybrids between DR147 and the original double-ditelosomic dDT2B of Langdon lost vigor and died prematurely after the three-leaf stage; therefore, the dDT2B line was not obtained. The cytogenetic behaviors and phenotypic characteristics of each line were detailedly described. To distinguish the entire chromosome complement of tetraploid wheat, the DR147 karyotype was established by fluorescence in situ hybridization (FISH), using the Aegilops tauschii clone pAsl and the barley clone pHvG38 as probes. FISH using a cereal-specific centromere repeat (6C6) probe suggested that all the lines possessed four telosomes, except for 4AS of double-ditelosomic dDT4A, which carried a small segment of the long arm. On the basis of the idiogram of DR147, these lines were successfully discriminated by FISH using the probes pAsl and pHvG38 and were then accurately designated.

Download full-text PDF

Source
http://dx.doi.org/10.1139/gen-2013-0153DOI Listing

Publication Analysis

Top Keywords

tetraploid wheat
16
double ditelosomics
8
cultivar dr147
8
wheat
6
dr147
5
development discrimination
4
discrimination double
4
tetraploid
4
ditelosomics tetraploid
4
wheat cultivar
4

Similar Publications

This study focused on identifying amylase-trypsin inhibitors (ATIs) in seven Norwegian-cultivated wheat varieties, including common wheat and ancestral species, and identifying potentially harmful opioid peptides within the digesta of these wheats. LC-MS/MS analysis of tryptic peptides from ATI fractions revealed that the common wheat variety Børsum exhibited the highest diversity of ATIs ( = 24), while they were less represented in tetraploid emmer ( = 11). Hexaploid wheat Bastian showed low diversity and relative abundance of ATIs.

View Article and Find Full Text PDF

Ancestral genome reconstruction and the evolution of chromosomal rearrangements in Triticeae.

J Genet Genomics

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Chromosomal rearrangements (CRs) often cause phenotypic variations. Although several major rearrangements have been identified in Triticeae, a comprehensive study of the order, timing, and breakpoints of CRs has not been conducted. Here, we reconstruct high-quality ancestral genomes for the most recent common ancestor (MRCA) of the Triticeae, and the MRCA of the wheat lineage (Triticum and Aegilops).

View Article and Find Full Text PDF

Do different wheat ploidy levels respond differently against stripe rust infection: Interplay between reactive oxygen species (ROS) and the antioxidant defense system?

Plant Physiol Biochem

November 2024

Division of Genetics & Plant Breeding, Faculty of Agriculture (FoA), SKUAST-Kashmir, Wadura Campus, Sopore, 193201, J&K, India; Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, 6150, Australia. Electronic address:

Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst) is the most damaging wheat disease, causing substantial losses in global wheat production and productivity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the OXS3 gene family, known for its role in enhancing stress tolerance in plants, focusing on the phylogenetics and expression patterns within different cotton species.
  • A total of 12, 12, 22, and 23 OXS3 members were identified in selected diploid and tetraploid cotton species, revealing a consistent evolutionary relationship and highlighting genetic duplications that contribute to gene family expansion.
  • The analysis shows that OXS3 genes in cotton respond significantly to various abiotic stresses, with the highest expression in ovules, providing insights for potential genetic improvements in cotton breeding.
View Article and Find Full Text PDF

Cytotypes in Some Regions of Türkiye.

Plants (Basel)

November 2024

Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, 65090 Van, Türkiye.

A new hexaploid cytotype of has been identified in Türkiye. To assess the ploidy levels of native populations, 50 samples from Adıyaman, Batman, Bitlis, Diyarbakır, Hakkari, Mardin, Siirt, Şanlıurfa, Şırnak, and Van were analyzed using flow cytometry and cytogenetic techniques. DNA content was determined by comparison with standard plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!