Nitrogen monoxide (NO) and nitrogen dioxide referred as NOx are one of the most important air pollutants in the atmosphere. Biological NOx removal technologies have been developing to reach a cost-effective control method for upcoming stringent NOx emission standards. The BioDeNOx system was seen as a promising biological NOx control technology which is composed of two reactors, one for absorbing of NO in an aqueous Fe(II)EDTA2- solution and the other for subsequent reduction to N2 gas in a biological reactor by the denitrification process. In this study, instead of two discrete reactors, only one jet-loop bioreactor (JLBR) was utilized as both absorption and denitrification unit and no chelate-forming chemicals were added. In other words, the advantage of better mass transfer conditions of jet bioreactor was used instead of Fe(II)EDTA2-. The process was named as Jet-BioDeNOx. The JLBR was operated for the removal of NOx from air streams containing 500-3000 ppm NOx and the results showed that the removal efficiency was between 81% and 94%. The air to liquid flow ratio (Q(G)/Q(RAS)) varied in the range of 0.07-0.12. Mathematical modelling of the system demonstrated that the removal efficiency strongly depends on this ratio. The high mass transfer conditions prevailed in the reactor provided a competitive advantage on removing NO gas without any requirement of chelating chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2013.868529DOI Listing

Publication Analysis

Top Keywords

biological nox
12
nox removal
12
denitrification process
8
jet-loop bioreactor
8
nox air
8
mass transfer
8
transfer conditions
8
removal efficiency
8
nox
6
removal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!